"Theta divisor"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
4번째 줄: 4번째 줄:
  
 
==articles==
 
==articles==
 +
* Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046.
 
* Kass, Jesse Leo, and Nicola Pagani. “Extensions of the Universal Theta Divisor.” arXiv:1507.03564 [math], July 13, 2015. http://arxiv.org/abs/1507.03564.
 
* Kass, Jesse Leo, and Nicola Pagani. “Extensions of the Universal Theta Divisor.” arXiv:1507.03564 [math], July 13, 2015. http://arxiv.org/abs/1507.03564.
 
* Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
 
* Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
 
* Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.
 
* Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.

2015년 10월 3일 (토) 16:12 판

introduction

It is a well known fact that the Theta divisor on the Jacobian of a non-singular curve is a determinantal variety, i.e. is defined by the zero set of a determinant.


articles

  • Izadi, Elham, and Jie Wang. “The Irreducibility of the Primal Cohomology of the Theta Divisor of an Abelian Fivefold.” arXiv:1510.00046 [math], September 30, 2015. http://arxiv.org/abs/1510.00046.
  • Kass, Jesse Leo, and Nicola Pagani. “Extensions of the Universal Theta Divisor.” arXiv:1507.03564 [math], July 13, 2015. http://arxiv.org/abs/1507.03564.
  • Krämer, Thomas. “Cubic Threefolds, Fano Surfaces and the Monodromy of the Gauss Map.” arXiv:1501.00226 [math], December 31, 2014. http://arxiv.org/abs/1501.00226.
  • Rahmati, Mohammad Reza. “Motive of Theta Divisor I.” arXiv:1411.3375 [math], October 30, 2014. http://arxiv.org/abs/1411.3375.