"3-manifolds and their invariants"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
128번째 줄: 128번째 줄:
 
* [http://arxiv.org/abs/hep-th/9811173 Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links]<br>
 
* [http://arxiv.org/abs/hep-th/9811173 Determinations of rational Dedekind-zeta invariants of hyperbolic manifolds and Feynman knots and links]<br>
 
** J.M. Borwein, D.J. Broadhurst, 1998
 
** J.M. Borwein, D.J. Broadhurst, 1998
 +
* Gliozzi, F., and R. Tateo. 1995. Thermodynamic Bethe Ansatz and Threefold Triangulations. hep-th/9505102 (May 17). doi:doi:[http://dx.doi.org/10.1142/S0217751X96001905 10.1142/S0217751X96001905]. http://arxiv.org/abs/hep-th/9505102.
 
*  Three-manifolds and the Temperley-Lieb algebra<br>
 
*  Three-manifolds and the Temperley-Lieb algebra<br>
 
** W. B. R. Lickorish, 1991
 
** W. B. R. Lickorish, 1991

2011년 6월 6일 (월) 07:31 판

maps between threefolds
  • maps between aspherical 3 manifolds
  • aspherical threefolds = second and higher homotopy groups vanish
  • JSJ decomposition http://en.wikipedia.org/wiki/JSJ_decomposition
    • cutting M into
      • Seifert fibered pieces ~ non hyperbolic pieces
      • atoroidal pieces ~ hyperbolic pieces
  • Thurston's geometrization
    • S^3, E\times S^2, Sol
    • E^3, E\times H^2, SL_2
    • H^3, Nil

 

 

introduction
  • volume of knot complements
  • Chern-Simons invariant of manifolds
  • Turaev-Viro invariant (related to 6j symbols)
    • Kauffman and Line 'The Temperley Lie algebra recoupling theory and invariants of 3-manifolds"
    • Turaev-Viro "state sum invariants of 3-manifolds and quantum 6j-symbols)

 

 

 

Volume of knot complement
  1. KnotData[]
    KnotData["FigureEight", "HyperbolicVolume"]
    N[%, 20]
  • Dedekind zeta funciton evaluated at 2 gives a number related to volume of 3-manifold
  • Bloch-Wigner dilogarithm is involved

 

 

a problem
  • Prove
    \(\frac{24}{7\sqrt{7}}\int_{\pi/3}^{\pi/2}\ln|\frac{\tan t+\sqrt{7}}{\tan t-\sqrt{7}}|\,dt=\frac{2}{\sqrt{7}}(D(e^{2\pi i/7})+D(e^{4\pi i/7})-D(e^{6\pi i/7}))=\frac{2}{\sqrt{7}}(Cl(2\pi /7})+Cl(4\pi/7})-Cl(6\pi/7}))\)
  • a log tangent integral

 

 

 

Reshetikihn, Turaev

 

 

 

software

 

 

history

 

 

 

하위페이지

 

 

related items

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links