"Talk on Rogers-Ramanujan identity"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* {{수학노트|url=로저스-라마누잔_항등식}}
 +
* {{수학노트|url=로저스-라마누잔_연분수}}
 +
* {{수학노트|url=로저스_다이로그_함수_(Rogers'_dilogarithm)}}
 +
:<math>L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy</math>
 +
:<math>L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}</math>
 +
:<math>L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}</math>
  
 +
 +
* <math>q=e^{-t}</math> 으로 두면 <math>t\sim 0</math> 일 때,
 +
:<math>H(q)=\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim  \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)</math>
 +
:<math>G(q)=\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim  \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)</math>
 +
* '''[McIntosh1995]''' 참조
 +
* 이로부터 다음을 알 수 있다<math>t\to 0</math> 일 때, <math>q=e^{-t}\to 1</math> 으로 두면
 +
:<math>\frac{H(1)}{G(1)} = \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots</math>
 +
:<math>r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}</math>
 +
:<math>r(0)=  \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots</math>
 +
* singular moduli
 +
$$
 +
r(i)=\cfrac{e^{\frac{-2\pi}{5}}}{1+\cfrac{e^{-2\pi}}{1+\cfrac{e^{-4\pi}}{1+\cfrac{e^{-6\pi}}{1+\cdots}}}}
 +
$$
 +
$$
 +
r(i)={\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}}
 +
$$
 +
* j-invariant
 +
$$
 +
j(\tau)=-\frac{(r(\tau)^{20}-228r(\tau)^{15}+494r(\tau)^{10}+228r(\tau)^{5}+1)^3}{r(\tau)^{5}(r(\tau)^{10}+11r(\tau)^{5}-1)^5}
 +
$$
 +
 +
 +
 +
==related items==
 +
 +
* [[asymptotic analysis of basic hypergeometric series]]
 +
 +
 +
 +
 +
 +
[[분류:개인노트]]
 +
[[분류:talks and lecture notes]]
 +
[[분류:migrate]]

2020년 11월 13일 (금) 20:46 판

introduction

\[L(x)=\operatorname{Li}_2(x)+\frac{1}{2}\log x\log (1-x)=-\frac{1}{2}\int_{0}^{x}\frac{\log(1-y)}{y}+\frac{\log(1-y)}{1-y}dy\] \[L(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}\] \[L(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}\]


  • \(q=e^{-t}\) 으로 두면 \(t\sim 0\) 일 때,

\[H(q)=\sum_{n=0}^\infty \frac {q^{n^2+n}} {(q;q)_n} \sim \sqrt\frac{2}{5+\sqrt{5}}\exp(\frac{\pi^2}{15t}+\frac{11t}{60})+o(1)\] \[G(q)=\sum_{n=0}^\infty \frac {q^{n^2}} {(q;q)_n} \sim \sqrt\frac{2}{5-\sqrt{5}}\exp(\frac{\pi^2}{15t}-\frac{t}{60})+o(1)\]

  • [McIntosh1995] 참조
  • 이로부터 다음을 알 수 있다\(t\to 0\) 일 때, \(q=e^{-t}\to 1\) 으로 두면

\[\frac{H(1)}{G(1)} = \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots\] \[r(\tau)=q^{\frac{1}{5}} \frac{H(q)}{G(q)} = \cfrac{q^{\frac{1}{5}}}{1+\cfrac{q}{1+\cfrac{q^2}{1+\cfrac{q^3}{1+\cdots}}}}\] \[r(0)= \sqrt{\frac{5-\sqrt{5}}{5+\sqrt{5}}}=\varphi-1=0.618\cdots\]

  • singular moduli

$$ r(i)=\cfrac{e^{\frac{-2\pi}{5}}}{1+\cfrac{e^{-2\pi}}{1+\cfrac{e^{-4\pi}}{1+\cfrac{e^{-6\pi}}{1+\cdots}}}} $$ $$ r(i)={\sqrt{5+\sqrt{5}\over 2}-{\sqrt{5}+1\over 2}} $$

  • j-invariant

$$ j(\tau)=-\frac{(r(\tau)^{20}-228r(\tau)^{15}+494r(\tau)^{10}+228r(\tau)^{5}+1)^3}{r(\tau)^{5}(r(\tau)^{10}+11r(\tau)^{5}-1)^5} $$


related items