"String hypothesis"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
8번째 줄: 8번째 줄:
 
$$
 
$$
 
where $\lambda_{\alpha}$ is a real number and $\epsilon$ small deviation
 
where $\lambda_{\alpha}$ is a real number and $\epsilon$ small deviation
 +
 +
 +
==Bethe Ansatz equations==
 +
* recall
 +
$$
 +
\begin{eqnarray}\label{bae}
 +
\left(  {\lambda_{j} - {i\over 2}
 +
\over  \lambda_{j} + {i\over 2}} \right)^{L}
 +
=  \prod_{\substack{
 +
l=1\\
 +
l\neq j}}^n
 +
{\lambda_{j} - \lambda_{l} - i
 +
\over
 +
\lambda_{j} - \lambda_{l} + i }
 +
\,, \qquad j = 1 \,, \cdots \,, n \,.
 +
\end{eqnarray}
 +
$$.
 +
* assume that $\Im{\lambda}>0$
 +
* fix $n$ and take $L\to \infty$. Then the LHS goes to $\infty$
 +
* this implies that there exists $l$ such that $\lambda_{j} - \lambda_{l} + i$ must be close to 0
 +
* this suggests the existence of strings
  
  

2014년 4월 7일 (월) 17:20 판

introduction

  • Bethe ansatz
  • the roots in a string are all equally spaced in the imaginary direction
  • a Bethe root consists of strings (as $L\to \infty$)
  • $n$-string

$$ \{\lambda_{\alpha}+\frac{i}{2}(n-1)+\epsilon_{\alpha,1},\lambda_{\alpha}+\frac{i}{2}(n-3)+\epsilon_{\alpha,2},\cdots, \lambda_{\alpha}-\frac{i}{2}(n-1)+\epsilon_{\alpha,n}\} $$ where $\lambda_{\alpha}$ is a real number and $\epsilon$ small deviation


Bethe Ansatz equations

  • recall

$$ \begin{eqnarray}\label{bae} \left( {\lambda_{j} - {i\over 2} \over \lambda_{j} + {i\over 2}} \right)^{L} = \prod_{\substack{ l=1\\ l\neq j}}^n {\lambda_{j} - \lambda_{l} - i \over \lambda_{j} - \lambda_{l} + i } \,, \qquad j = 1 \,, \cdots \,, n \,. \end{eqnarray} $$.

  • assume that $\Im{\lambda}>0$
  • fix $n$ and take $L\to \infty$. Then the LHS goes to $\infty$
  • this implies that there exists $l$ such that $\lambda_{j} - \lambda_{l} + i$ must be close to 0
  • this suggests the existence of strings


related items


computational resource


expositions


articles

  • Volin, Dmytro. 2012. “String Hypothesis for $\mathfrak{gl}(n|m)$ Spin Chains: A Particle/Hole Democracy.” Letters in Mathematical Physics 102 (1) (October 1): 1–29. doi:10.1007/s11005-012-0570-9.
  • Mukhin, E., V. Tarasov, and A. Varchenko. 2009. “Bethe Algebra of Homogeneous $XXX$ Heisenberg Model Has Simple Spectrum.” Communications in Mathematical Physics 288 (1): 1–42. doi:10.1007/s00220-009-0733-4.
  • Hagemans, R., and J.-S. Caux. 2007. “Deformed Strings in the Heisenberg Model.” Journal of Physics A: Mathematical and Theoretical 40 (49): 14605–47. doi:10.1088/1751-8113/40/49/001.
  • Kirillov, A. N. 1985. “Combinatorial Identities, and Completeness of Eigenstates of the Heisenberg Magnet.” Journal of Soviet Mathematics 30 (4) (August 1): 2298–2310. doi:10.1007/BF02105347.
  • Faddeev, L. D., and L. A. Takhtadzhyan. 1984. “Spectrum and Scattering of Excitations in the One-dimensional Isotropic Heisenberg Model.” Journal of Soviet Mathematics 24 (2) (January 1): 241–267. doi:10.1007/BF01087245.
  • Takahashi, Minoru. 1971. “One-Dimensional Heisenberg Model at Finite Temperature.” Progress of Theoretical Physics 46 (2) (August 1): 401–415. doi:10.1143/PTP.46.401.
  • Bethe, H. 1931. “Zur Theorie der Metalle.” Zeitschrift für Physik 71 (3-4) (March 1): 205–226. doi:10.1007/BF01341708


questions