"String hypothesis"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
8번째 줄: | 8번째 줄: | ||
$$ | $$ | ||
where $\lambda_{\alpha}$ is a real number and $\epsilon$ small deviation | where $\lambda_{\alpha}$ is a real number and $\epsilon$ small deviation | ||
+ | |||
+ | |||
+ | ==Bethe Ansatz equations== | ||
+ | * recall | ||
+ | $$ | ||
+ | \begin{eqnarray}\label{bae} | ||
+ | \left( {\lambda_{j} - {i\over 2} | ||
+ | \over \lambda_{j} + {i\over 2}} \right)^{L} | ||
+ | = \prod_{\substack{ | ||
+ | l=1\\ | ||
+ | l\neq j}}^n | ||
+ | {\lambda_{j} - \lambda_{l} - i | ||
+ | \over | ||
+ | \lambda_{j} - \lambda_{l} + i } | ||
+ | \,, \qquad j = 1 \,, \cdots \,, n \,. | ||
+ | \end{eqnarray} | ||
+ | $$. | ||
+ | * assume that $\Im{\lambda}>0$ | ||
+ | * fix $n$ and take $L\to \infty$. Then the LHS goes to $\infty$ | ||
+ | * this implies that there exists $l$ such that $\lambda_{j} - \lambda_{l} + i$ must be close to 0 | ||
+ | * this suggests the existence of strings | ||
2014년 4월 7일 (월) 17:20 판
introduction
- Bethe ansatz
- the roots in a string are all equally spaced in the imaginary direction
- a Bethe root consists of strings (as $L\to \infty$)
- $n$-string
$$ \{\lambda_{\alpha}+\frac{i}{2}(n-1)+\epsilon_{\alpha,1},\lambda_{\alpha}+\frac{i}{2}(n-3)+\epsilon_{\alpha,2},\cdots, \lambda_{\alpha}-\frac{i}{2}(n-1)+\epsilon_{\alpha,n}\} $$ where $\lambda_{\alpha}$ is a real number and $\epsilon$ small deviation
Bethe Ansatz equations
- recall
$$ \begin{eqnarray}\label{bae} \left( {\lambda_{j} - {i\over 2} \over \lambda_{j} + {i\over 2}} \right)^{L} = \prod_{\substack{ l=1\\ l\neq j}}^n {\lambda_{j} - \lambda_{l} - i \over \lambda_{j} - \lambda_{l} + i } \,, \qquad j = 1 \,, \cdots \,, n \,. \end{eqnarray} $$.
- assume that $\Im{\lambda}>0$
- fix $n$ and take $L\to \infty$. Then the LHS goes to $\infty$
- this implies that there exists $l$ such that $\lambda_{j} - \lambda_{l} + i$ must be close to 0
- this suggests the existence of strings
computational resource
expositions
- Sato-Deguchi, Numerical analysis of string solutions of the integrable XXZ spin chains
- R.P. Vlijm Numerical solutions of the Bethe equations for the isotropic spin-1 chain
articles
- Volin, Dmytro. 2012. “String Hypothesis for $\mathfrak{gl}(n|m)$ Spin Chains: A Particle/Hole Democracy.” Letters in Mathematical Physics 102 (1) (October 1): 1–29. doi:10.1007/s11005-012-0570-9.
- Mukhin, E., V. Tarasov, and A. Varchenko. 2009. “Bethe Algebra of Homogeneous $XXX$ Heisenberg Model Has Simple Spectrum.” Communications in Mathematical Physics 288 (1): 1–42. doi:10.1007/s00220-009-0733-4.
- Hagemans, R., and J.-S. Caux. 2007. “Deformed Strings in the Heisenberg Model.” Journal of Physics A: Mathematical and Theoretical 40 (49): 14605–47. doi:10.1088/1751-8113/40/49/001.
- Kirillov, A. N. 1985. “Combinatorial Identities, and Completeness of Eigenstates of the Heisenberg Magnet.” Journal of Soviet Mathematics 30 (4) (August 1): 2298–2310. doi:10.1007/BF02105347.
- Faddeev, L. D., and L. A. Takhtadzhyan. 1984. “Spectrum and Scattering of Excitations in the One-dimensional Isotropic Heisenberg Model.” Journal of Soviet Mathematics 24 (2) (January 1): 241–267. doi:10.1007/BF01087245.
- Takahashi, Minoru. 1971. “One-Dimensional Heisenberg Model at Finite Temperature.” Progress of Theoretical Physics 46 (2) (August 1): 401–415. doi:10.1143/PTP.46.401.
- Bethe, H. 1931. “Zur Theorie der Metalle.” Zeitschrift für Physik 71 (3-4) (March 1): 205–226. doi:10.1007/BF01341708