"Sphere Packings, Lattices and Groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
1번째 줄: 1번째 줄:
 
==some conventions==
 
==some conventions==
* $q=e^{\pi i z}$
+
* <math>q=e^{\pi i z}</math>
  
 
==chapter 2==
 
==chapter 2==
6번째 줄: 6번째 줄:
  
 
==chapter 7==
 
==chapter 7==
* type I = self-dual, $\operatorname{wt}(C)\equiv 0 \mod 2$ and there exists $C\in \mathcal{C}$ such that $\operatorname{wt}(C)\equiv 2 \mod 4$
+
* type I = self-dual, <math>\operatorname{wt}(C)\equiv 0 \mod 2</math> and there exists <math>C\in \mathcal{C}</math> such that <math>\operatorname{wt}(C)\equiv 2 \mod 4</math>
 
* type II = even, self-dual
 
* type II = even, self-dual
 
===type I codes===
 
===type I codes===

2020년 11월 16일 (월) 04:32 판

some conventions

  • \(q=e^{\pi i z}\)

chapter 2

  • section 2.4 Integral lattices

chapter 7

  • type I = self-dual, \(\operatorname{wt}(C)\equiv 0 \mod 2\) and there exists \(C\in \mathcal{C}\) such that \(\operatorname{wt}(C)\equiv 2 \mod 4\)
  • type II = even, self-dual

type I codes


extremal even unimodular lattices

  • Nebe, Gabriele, and Richard Parker. “On Extremal Even Unimodular 72-Dimensional Lattices.” Mathematics of Computation 83, no. 287 (2014): 1489–94. doi:10.1090/S0025-5718-2013-02744-5.
  • Nebe, Gabriele. “On Automorphisms of Extremal Even Unimodular Lattices of Dimension 48.” arXiv:1212.0865 [math], December 4, 2012. http://arxiv.org/abs/1212.0865.


computational resource