"Cartan decomposition of general linear groups"의 두 판 사이의 차이
imported>Pythagoras0 |
Pythagoras0 (토론 | 기여) (→메타데이터: 새 문단) |
||
58번째 줄: | 58번째 줄: | ||
* https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view | * https://drive.google.com/file/d/1LV3AvkCQAGB_ifEzpy8V-96mq-2a2amO/view | ||
[[분류:migrate]] | [[분류:migrate]] | ||
+ | |||
+ | == 메타데이터 == | ||
+ | |||
+ | ===위키데이터=== | ||
+ | * ID : [https://www.wikidata.org/wiki/Q3042798 Q3042798] |
2020년 12월 28일 (월) 00:53 판
introduction
\( \newcommand{\pmat}[4]{\begin{pmatrix} #1 & #2 \\ #3 & #4\end{pmatrix}} \def\GL#1{\mathrm{GL}_{#1}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Qp}{\Q_p} \newcommand{\Zp}{\Z_p} \newcommand{\HH}{\mathcal{H}} \newcommand{\fsph}{f_{\mathrm{sph}}} \)
application to Hecke operators
- Let \(G = \GL2(\Qp)\) and \(K = \GL2(\Zp)\)
- Cartan decomposition \[G = \bigcup_{(m,n)\in \Z^2 : m\geq n} K\pmat {p^m} 0 0 {p^n} K\]
- The Hecke operator \(T_p\in \HH(G,K)\) is given by convolution with the characteristic function of \(K\pmat p 0 0 1 K\)
- Similarly, the operator \(R_p\) is given by convolution with the characteristic function of \(K \pmat p 0 0 p K\)
- How \(T_p\) and \(R_p\) act?
- The double coset for \(T_p\) decomposes as
\[ K \pmat p 0 0 1 K = \bigcup_{b=0}^{p-1} \pmat p b 0 1 K \bigcup \pmat 1 0 0 p K . \]
- Hence
\[ \begin{aligned} (T_p \fsph)(1) & = \int_{K}\sum_{b}^{p-1} \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right)\, dg \\ & = \fsph\left(\pmat p b 0 1 g \right)+ \fsph\left(\pmat 1 0 0 p g \right) \\ & = p \chi_1(p)|p|^{1/2}+p \chi_2(p)|p|^{-1/2} \\ & = p^{1/2}(\chi_1(p)+\chi_2(p)). \end{aligned} \]
- The double coset for \(R_p\) is the single coset \(\pmat p 0 0 p K\), so
\[ \begin{aligned} (R_p\fsph)(1) & = \int_K \fsph\left(\pmat p 0 0 p g \right)+ dg \\ & = \fsph\left(\pmat p 0 0 p g \right) \\ & = \chi_1(p)\chi_2(p). \end{aligned} \]
computational resource
메타데이터
위키데이터
- ID : Q3042798