"울프람알파의 활용"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) (→사용예) |
||
86번째 줄: | 86번째 줄: | ||
* [http://www.wolframalpha.com/input/?i=r%5E2 http://www.wolframalpha.com/input/?i=r^2] | * [http://www.wolframalpha.com/input/?i=r%5E2 http://www.wolframalpha.com/input/?i=r^2] | ||
− | * http://www.wolframalpha.com/input/?i= | + | |
− | * http://www.wolframalpha.com/input/?i= | + | |
− | * http://www.wolframalpha.com/input/?i= | + | ==parametric curves== |
+ | |||
+ | * parabola | ||
+ | ** plot x=t^2-2,y=5-2t where -3<t<4 | ||
+ | ** [http://www.wolframalpha.com/input/?i=plot+x%3Dt%5E2-2,y%3D5-2t+where+-3%3Ct%3C4 output] | ||
+ | |||
+ | * ellipse | ||
+ | ** plot x=4cos t,y=5sin t where -pi/2<t<pi/2 | ||
+ | ** [http://www.wolframalpha.com/input/?i=plot+x%3D4cos+t,y%3D5sin+t+where+-pi/2%3Ct%3Cpi/2 output] | ||
+ | * hyperbola | ||
+ | ** parametricplot x=sinh t,y=cosh t, -1<t<1 | ||
+ | ** [http://www.wolframalpha.com/input/?i=parametricplot+x%3Dsinh+t,y%3Dcosh+t,+-1%3Ct%3C1 output] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ==polar coorinates== | ||
+ | |||
+ | * [http://www.wolframalpha.com/input/?i=polar+plot+r+%3D+1+-+2sin+t polar plot r = 1 - 2sin t] | ||
2020년 12월 28일 (월) 00:07 판
개요
- 울프람 알파
- 연산능력을 갖춘 지식엔진
- http://www.wolframalpha.com
- http://mathdl.maa.org/images/upload_library/23/karaali/alpha/index.html
문제풀이와 울프람알파
방정식의 풀이
숙제와 울프람알파
그래프 그리기
10.4.44.
http://www.wolframalpha.com/input/?i=(r-(8%2B8sin+theta))(r+sin+theta+-4)%3D0
Note that \(2\sin^2 \alpha +2\sin \alpha-1=0\).
Since \(0< \alpha <\frac{\pi}{2}\), \(\sin \alpha =\frac{\sqrt 3 -1}{2}\) and \(\cos \alpha =\sqrt{\frac{\sqrt 3}{2}}\)
\(\frac{1}{2}\int_{\alpha}^{\pi-\alpha}r^2 d\theta=\int_{\alpha}^{\pi/2}r^2 d\theta=\int_{\alpha}^{\pi/2}64(1+\sin\theta)^2d\theta\)
\(=64\int_{\alpha}^{\pi/2}(1+\sin\theta)^2d\theta=64\int_{\alpha}^{\pi/2}1+2\sin\theta+\sin^2\theta d\theta\)
\(=64[\frac{3}{2}\theta - 2 \cos \theta- \frac{1}{4}\sin 2\theta]_{\alpha}^{\pi/2}=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}\)
\(=[96\theta - 128 \cos \theta- 16\sin 2\theta]_{\alpha}^{\pi/2}=48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha\)
We need to subtract from this the area of the triangle which is given by \[2\times \frac{1}{2}\cdot 4 (8+8\sin\alpha)\sin (\pi/2-\alpha)=32(1+\sin\alpha)\cos \alpha=32\cos \alpha+16 \sin 2\alpha\]
So the area will be given by \[48\pi-96\alpha+128\cos \alpha+16\sin 2\alpha-(32\cos \alpha+16 \sin 2\alpha)=48\pi-96\alpha+96\cos \alpha\approx 204.16\]
http://www.wolframalpha.com/input/?i=N[48pi+-96(arcsin{(sqrt+3+-+1)/2})%2B96(sqrt((sqrt+3)/2)),10]
사용예
parametric curves
- parabola
- plot x=t^2-2,y=5-2t where -3<t<4
- output
- ellipse
- plot x=4cos t,y=5sin t where -pi/2<t<pi/2
- output
- hyperbola
- parametricplot x=sinh t,y=cosh t, -1<t<1
- output
polar coorinates