"교차비(cross ratio)"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
2번째 줄: | 2번째 줄: | ||
* 사영기하학의 기본개념 | * 사영기하학의 기본개념 | ||
− | * 네 | + | * 네 복소수 <math>z_1,z_2,z_3,z_4</math>에 대하여 다음과 같이 정의됨. |
:<math>(z_1,z_2;z_3,z_4) = \frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)}</math> | :<math>(z_1,z_2;z_3,z_4) = \frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)}</math> | ||
− | * <math>z_4=\infty</math> | + | * <math>z_4=\infty</math> 인 경우 |
:<math>(z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}</math> | :<math>(z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}</math> | ||
− | + | ||
− | + | ||
− | + | ||
==대칭군과 교차비== | ==대칭군과 교차비== | ||
− | * [[대칭군 (symmetric group)]] | + | * [[대칭군 (symmetric group)]]은 <math>\{1,2,3,4\}</math>에 작용한다 |
* 조화비의 isotopy group은 다음과 같이 주어진다 | * 조화비의 isotopy group은 다음과 같이 주어진다 | ||
:<math> | :<math> | ||
50번째 줄: | 50번째 줄: | ||
:<math> \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}</math> | :<math> \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}</math> | ||
− | + | ||
− | + | ||
==사영기하학과 교차비== | ==사영기하학과 교차비== | ||
65번째 줄: | 65번째 줄: | ||
[[파일:3259985-afigure006-riemann65.jpg]] | [[파일:3259985-afigure006-riemann65.jpg]] | ||
− | + | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
78번째 줄: | 78번째 줄: | ||
* [[원근법과 수학]] | * [[원근법과 수학]] | ||
− | + | ||
− | + | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
87번째 줄: | 87번째 줄: | ||
* http://mathworld.wolfram.com/CrossRatio.html | * http://mathworld.wolfram.com/CrossRatio.html | ||
− | + | ||
− | + | ||
==수학용어번역== | ==수학용어번역== | ||
95번째 줄: | 95번째 줄: | ||
** cross ratio | ** cross ratio | ||
** 비조화비, 복비 | ** 비조화비, 복비 | ||
− | + | ||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
* http://en.wikipedia.org/wiki/cross_ratio | * http://en.wikipedia.org/wiki/cross_ratio | ||
[[분류:복소함수론]] | [[분류:복소함수론]] |
2020년 12월 28일 (월) 02:05 판
교차비
- 사영기하학의 기본개념
- 네 복소수 \(z_1,z_2,z_3,z_4\)에 대하여 다음과 같이 정의됨.
\[(z_1,z_2;z_3,z_4) = \frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)}\]
- \(z_4=\infty\) 인 경우
\[(z_1,z_2;z_3,\infty) = \frac{(z_1-z_3)}{(z_2-z_3)}\]
대칭군과 교차비
- 대칭군 (symmetric group)은 \(\{1,2,3,4\}\)에 작용한다
- 조화비의 isotopy group은 다음과 같이 주어진다
\[ \left\{\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{array} \right),\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{array} \right),\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{array} \right),\left( \begin{array}{cccc} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{array} \right)\right\} \] 즉 \((z_1,z_2;z_3,z_4)=(z_2,z_1;z_4,z_3)=(z_3,z_4;z_1,z_2)=(z_4,z_3;z_2,z_1)\)
- 조화비는 \(S_4\)의 작용에 의해 다음과 같이 변화한다
\[(z_1, z_2; z_3, z_4) = \lambda\] \[(z_1, z_2; z_4, z_3) = {1\over\lambda}\] \[(z_1, z_3; z_4, z_2) = {1\over{1-\lambda}}\] \[(z_1, z_3; z_2, z_4) = 1-\lambda\] \[(z_1, z_4; z_3, z_2) = {\lambda\over{\lambda-1}}\] \[(z_1, z_4; z_2, z_3) = {{\lambda-1}\over\lambda}\]
- 즉 대칭군에 의해 다음 값을 가질 수 있다
\[ \lambda, {1\over\lambda},{1\over{1-\lambda}}, 1-\lambda, {\lambda\over{\lambda-1}}, {{\lambda-1}\over\lambda}\]
사영기하학과 교차비
- 뫼비우스 변환이 네 점, \(z_1,z_2,z_3,z_4\) 를 \(w_1,w_2,w_3,w_4\)로 보내는 경우, 교차비는 보존됨.
\[\frac{(z_1-z_3)(z_2-z_4)}{(z_2-z_3)(z_1-z_4)} = \frac{(w_1-w_3)(w_2-w_4)}{(w_2-w_3)(w_1-w_4)}\] 즉 \(ad-bc\neq 0\)일 때, \[ \frac{\left(z_1-z_3\right) \left(z_2-z_4\right)}{\left(z_2-z_3\right) \left(z_1-z_4\right)}= \frac{\left(\frac{a z_1+b}{c z_1+d}-\frac{a z_3+b}{c z_3+d}\right) \left(\frac{a z_2+b}{c z_2+d}-\frac{a z_4+b}{c z_4+d}\right)}{\left(\frac{a z_2+b}{c z_2+d}-\frac{a z_3+b}{c z_3+d}\right) \left(\frac{a z_1+b}{c z_1+d}-\frac{a z_4+b}{c z_4+d}\right)} \]
- 교차비는 사영기하학의 불변량이다
관련된 항목들
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxY2Y4OWEwNWMtMGU0Zi00NTEwLTlkYjctZWE3NDE0YTA2YmM2&sort=name&layout=list&num=50
- http://mathworld.wolfram.com/CrossRatio.html
수학용어번역
- cross - 대한수학회 수학용어집
- cross ratio
- 비조화비, 복비