"원주율과 연분수 Brouncker 의 공식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
− | + | ||
− | + | ||
==Brouncker 의 공식== | ==Brouncker 의 공식== | ||
11번째 줄: | 11번째 줄: | ||
* 증명은 [[감마함수의 비와 라마누잔의 연분수]] 항목을 참조 | * 증명은 [[감마함수의 비와 라마누잔의 연분수]] 항목을 참조 | ||
− | + | ||
− | + | ||
==역사== | ==역사== | ||
23번째 줄: | 23번째 줄: | ||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | + | ||
− | + | ||
==메모== | ==메모== | ||
33번째 줄: | 33번째 줄: | ||
* Math Overflow http://mathoverflow.net/search?q= | * Math Overflow http://mathoverflow.net/search?q= | ||
− | + | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
41번째 줄: | 41번째 줄: | ||
* [[연분수]] | * [[연분수]] | ||
− | + | ||
− | + | ||
==수학용어번역== | ==수학용어번역== | ||
− | * | + | * 발음사전 http://www.forvo.com/search/Brouncker |
− | + | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
55번째 줄: | 55번째 줄: | ||
* https://docs.google.com/file/d/0B8XXo8Tve1cxY1hfbDc2Q1FPVUU/edit | * https://docs.google.com/file/d/0B8XXo8Tve1cxY1hfbDc2Q1FPVUU/edit | ||
* http://functions.wolfram.com/02.03.10.0008.01 | * http://functions.wolfram.com/02.03.10.0008.01 | ||
− | + | ||
− | + | ||
− | ==사전 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
65번째 줄: | 65번째 줄: | ||
− | + | ||
==리뷰, 에세이, 강의노트== | ==리뷰, 에세이, 강의노트== | ||
* [http://web.cs.dal.ca/%7Ejborwein/Preprints/Talks/M2600/Readings/pi-osler.pdf http://web.cs.dal.ca/~jborwein/Preprints/Talks/M2600/Readings/pi-osler.pdf] | * [http://web.cs.dal.ca/%7Ejborwein/Preprints/Talks/M2600/Readings/pi-osler.pdf http://web.cs.dal.ca/~jborwein/Preprints/Talks/M2600/Readings/pi-osler.pdf] | ||
− | + | ||
− | + | ||
==관련논문== | ==관련논문== | ||
78번째 줄: | 78번째 줄: | ||
− | + | ||
[[분류:원주율]] | [[분류:원주율]] | ||
[[분류:연분수]] | [[분류:연분수]] |
2020년 12월 28일 (월) 02:48 판
개요
Brouncker 의 공식
- 다음과 같은 원주율의 연분수 표현\[\frac{4}{\pi}=1+\cfrac{1}{2+\cfrac{9 }{2+\cfrac{25 }{2+\cfrac{49 }{2+\cfrac{81 }{2+\cfrac{121 }{2+\cfrac{169 }{2+\cfrac{225 }{2+\cdots}}}}}}}}\]
- 역수는 다음과 같이 주어진다\[\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}\]
- 증명은 감마함수의 비와 라마누잔의 연분수 항목을 참조
역사
- 비에타 1579
- Brouncker
- 월리스
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- 수학사 연표
메모
- Math Overflow http://mathoverflow.net/search?q=
관련된 항목들
수학용어번역
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxY1hfbDc2Q1FPVUU/edit
- http://functions.wolfram.com/02.03.10.0008.01
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/William_Brouncker,_2nd_Viscount_Brouncker
리뷰, 에세이, 강의노트
관련논문
- Osler, Thomas J. 2009. “Lord Brouncker’s Forgotten Sequence of Continued Fractions for Pi.” International Journal of Mathematical Education in Science and Technology 41 (1): 105–110. doi:10.1080/00207390903189195.