"그리스문자 및 특수문자모음"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
56번째 줄: 56번째 줄:
  
 
 
 
 
 +
----
  
{| width="179" style="border-collapse: collapse; width: 134pt;"
+
<math>\alpha</math> \alpha<br><math>\beta</math> \beta<br><math>\gamma</math> \gamma<br><math>\delta</math> \delta<br><math>\epsilon</math> \epsilon<br><math>\varepsilon</math> \varepsilon<br><math>\zeta</math> \zeta<br><math>\eta</math> \eta<br><math>\theta</math> \theta<br><math>\vartheta</math> \vartheta<br><math>\Gamma</math> \Gamma<br><math>\Delta</math> \Delta<br><math>\Theta</math> \Theta<br><math>\Lambda</math> \Lambda<br><math>\iota</math> \iota<br><math>\kappa</math> \kappa<br><math>\lambda</math> \lambda<br><math>\mu</math> \mu<br><math>\nu</math> \nu<br><math>\xi</math> \xi<br><math>o</math> o<br><math>\pi</math> \pi<br><math>\varpi</math> \varpi<br><math>\rho</math> \rho<br><math>\Xi</math> \Xi<br><math>\Pi</math> \Pi<br><math>\Sigma</math> \Sigma<br><math>\Upsilon</math> \Upsilon<br><math>\varrho</math> \varrho<br><math>\sigma</math> \sigma<br><math>\varsigma</math> \varsigma<br><math>\tau</math> \tau<br><math>\upsilon</math> \upsilon<br><math>\phi</math> \phi<br><math>\varphi</math> \varphi<br><math>\chi</math> \chi<br><math>\psi</math> \psi<br><math>\omega</math> \omega<br><math>\Phi</math> \Phi<br><math>\Psi</math> \Psi<br><math>\Omega</math> \Omega
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
  
| \alpha
+
 
|-
 
| Bitmap Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \beta
 
|-
 
|
 
| \gamma
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \delta
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \epsilon
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \varepsilon
 
|-
 
| Bitmap Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \zeta
 
|-
 
|
 
| \eta
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \theta
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \vartheta
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \Gamma
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \Delta
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \Theta
 
|-
 
| Bitmap
 
{|
 
|-
 
|
 
|}
 
 
 
| \Lambda
 
|}
 
  
 
 
 
 

2008년 10월 27일 (월) 14:23 판

연습해보는 곳

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?


  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 

  1. http://bomber0.byus.net/mimetex/mimetex.cgi?

 


\(\alpha\) \alpha
\(\beta\) \beta
\(\gamma\) \gamma
\(\delta\) \delta
\(\epsilon\) \epsilon
\(\varepsilon\) \varepsilon
\(\zeta\) \zeta
\(\eta\) \eta
\(\theta\) \theta
\(\vartheta\) \vartheta
\(\Gamma\) \Gamma
\(\Delta\) \Delta
\(\Theta\) \Theta
\(\Lambda\) \Lambda
\(\iota\) \iota
\(\kappa\) \kappa
\(\lambda\) \lambda
\(\mu\) \mu
\(\nu\) \nu
\(\xi\) \xi
\(o\) o
\(\pi\) \pi
\(\varpi\) \varpi
\(\rho\) \rho
\(\Xi\) \Xi
\(\Pi\) \Pi
\(\Sigma\) \Sigma
\(\Upsilon\) \Upsilon
\(\varrho\) \varrho
\(\sigma\) \sigma
\(\varsigma\) \varsigma
\(\tau\) \tau
\(\upsilon\) \upsilon
\(\phi\) \phi
\(\varphi\) \varphi
\(\chi\) \chi
\(\psi\) \psi
\(\omega\) \omega
\(\Phi\) \Phi
\(\Psi\) \Psi
\(\Omega\) \Omega

 

 


 

\alpha \iota \varrho
\beta \kappa \sigma
\gamma \lambda \varsigma
\delta \mu \tau
\epsilon \nu \upsilon
\varepsilon \xi \phi
\zeta o o \varphi
\eta \pi \chi
\theta \varpi \psi
\vartheta \rho \omega
 
\Gamma \Xi \Phi
\Delta \Pi \Psi
\Theta \Sigma \Omega
\Lambda \Upsilon

 

\aleph \prime \forall
h \hbar \emptyset \exists
\imath \nabla \neg
\jmath \surd \flat
\ell \top \natural
\wp \bot \sharp
\Re \clubsuit
\Im \angle \diamondsuit
\partial \triangle \heartsuit
\infty \backslash \spadesuit
\ldots \cdots \vdots \ddots

 

arcsin \arcsin dim \dim log \log
arccos \arccos exp \exp max \max
arctan \arctan gcd \gcd min \min
arg \arg hom \hom Pr \Pr
cos \cos inf \inf sec \sec
cosh \cosh ker \ker sin \sin
cot \cot lg \lg sinh \sinh
coth \coth lim \lim sup \sup
csc \csc liminf \liminf tan \tan
deg \deg limsup \limsup tanh \tanh
det \det ln \ln

 

\sum \bigcap \bigodot
\prod \bigcup \bigotimes
\coprod \bigsqcup \bigoplus
\int \bigvee \biguplus
\oint \bigwedge
\pm \cap \vee
\mp \cup \wedge
\setminus \uplus \oplus
\cdot \sqcap \ominus
\times \sqcup \otimes
\ast \triangleleft \oslash
\star \triangleright \odot
\diamond \wr \dagger
\circ \bigcirc \ddagger
\bullet \bigtriangleup \amalg
\div \bigtriangledown
\leftarrow \longleftarrow \uparrow
\Leftarrow = \Longleftarrow \Uparrow
\rightarriw \longrightarrow \downarrow
\Rightarrow = \Longrightarrow \Downarrow
\leftrightarrow \longleftrightarrow \updownarrow
\Leftrightarrow \Longleftrightarrow \Updownarrow
\mapsto \longmapsto \nearrow
\hookleftarrow \hookrightarrow \searrow
\leftharpoonup \rightharpoonup \swarrow
\leftharpoondown \rightharpoondown \nwarrow
\rightleftharpoons

Delimiters


  normal:()[]()  

  \big:  

  \Big:  

  \bigg:  

  \Bigg:  


Marks above and below:

 

 

   
x+y+z \overline{x+y+z}
  \underline{x+y+z} x+y+z
x++xktimes \overbrace{x+\cdots+x}^{k\;\rm times}
  \underbrace{x+\cdots+x}_{k\;\rm times} x++xktimes
−−−−−−−−−−x1++xk \overleftarrow{x_1+\cdots+x_k}
  \overrightarrow{x_1+\cdots+x_k} −−−−−−−−−−x1++xk
{n \choose 2}   2n  
{n \brack 2}   2n  
{n \brace 2}   2n  
f(x)=\cases {
      x^2+1&\text{if $x<0$}\cr
      1-x&\text{otherwise}
}
  f(x)=\cases{x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise}}  
\pmatrix{1& 0\\ 0& 1}   1001  
\left[\matrix{a^2-b^2& -1\\ 1& 2ab}\right]   a2−b21−12ab
= \ne or \neq (same as \not=) \dagger
\le (same as \leq) \ddagger
\ge (same as \geq)
\{ (same as \lbrace)
\} (same as \rbrace)
\to (same as \rightarrow)
\gets (same as \leftarrow)
\owns (same as \ni)
\land (same as \wedge)
\lor (same as \vee)
\lnot (same as \neg)
(same as \vert)
(same as \Vert)

http://www.math.union.edu/~dpvc/jsmath/symbols/welcome.html 에서 가져옴.