"다이로그 함수(dilogarithm)"의 두 판 사이의 차이
21번째 줄: | 21번째 줄: | ||
<h5>Special values</h5> | <h5>Special values</h5> | ||
− | + | 다음 값들은 알려져 있음. | |
<math>\mbox{Li}_{2}(0)=0</math> | <math>\mbox{Li}_{2}(0)=0</math> | ||
31번째 줄: | 31번째 줄: | ||
<math>\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)</math> | <math>\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)</math> | ||
− | <math>\mbox{Li}_{2}(\frac{ | + | <math>\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})</math> |
− | |||
− | |||
− | |||
− | |||
− | <math>\mbox{Li}_{2}( | + | <math>\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})</math> |
− | <math>\mbox{Li}_{2}( | + | <math>\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math> |
− | <math>\mbox{Li}_{2}( | + | <math>\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})</math> |
− | + | * [[황금비]] | |
68번째 줄: | 64번째 줄: | ||
<h5>재미있는 사실</h5> | <h5>재미있는 사실</h5> | ||
− | * Don Zagier | + | * Don Zagier |
+ | |||
+ | <blockquote> | ||
+ | The dilogarithm is the only mathematical function with a sense of humor | ||
+ | </blockquote> | ||
2009년 5월 8일 (금) 03:21 판
간단한 소개
\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt = \sum_{k=1}^\infty {z^k \over k^2}\)
함수방정식
\(\mbox{Li}_2(x)+\mbox{Li}_2 \left( \frac{1}{x} \right) = -\frac{\pi^2}{6}-\frac{1}{2}(\ln(-x))^2 \qquad\)
\(\mbox{Li}_2 \left(x \right)+\mbox{Li}_2 \left(1-x \right)= \frac{\pi^2}{6}-\ln(x)\ln(1-x)\)
\(\mbox{Li}_2(-x)=-\mbox{Li}_2 \left( \frac{x}{1+x} \right)-\frac{1}{2}(\ln(x+1))^2 \)
Special values
다음 값들은 알려져 있음.
\(\mbox{Li}_{2}(0)=0\)
\(\mbox{Li}_{2}(1)=\frac{\pi^2}{6}\)
\(\mbox{Li}_{2}(-1)=-\frac{\pi^2}{12}\)
\(\mbox{Li}_{2}(\frac{1}{2})=\frac{\pi^2}{12}-\frac{1}{2}\log^2(2)\)
\(\mbox{Li}_{2}(\frac{3-\sqrt{5}}{2})=\frac{\pi^2}{15}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1+\sqrt{5}}{2})=\frac{\pi^2}{10}-\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{1-\sqrt{5}}{2})=-\frac{\pi^2}{15}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
\(\mbox{Li}_{2}(\frac{-1-\sqrt{5}}{2})=-\frac{\pi^2}{10}+\frac{1}{2}\log^2(\frac{1+\sqrt{5}}{2})\)
하위주제들
하위페이지
재미있는 사실
- Don Zagier
The dilogarithm is the only mathematical function with a sense of humor
관련된 단원
많이 나오는 질문
관련된 고교수학 또는 대학수학
관련된 다른 주제들
관련도서 및 추천도서
- Frontiers in number theory, physics, and geometry II
- Cartier P., Julia B., Moussa P., Vanhove P.
- Polylogarithms and associated functions
- Lewin L
- 도서내검색
- 도서검색
참고할만한 자료
- http://en.wikipedia.org/wiki/Polylogarithm
- http://en.wikipedia.org/wiki/Dilogarithm
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://viswiki.com/en/
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
- 다음백과사전 http://enc.daum.net/dic100/search.do?q=
- 대한수학회 수학 학술 용어집
관련기사
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
이미지 검색
- http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
- http://images.google.com/images?q=
- http://www.artchive.com