"대칭군 (symmetric group)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 스프링노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소== |
* [[대칭군 (symmetric group)]] | * [[대칭군 (symmetric group)]] | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요== |
* 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸 | * 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸 | ||
17번째 줄: | 17번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">presentation | + | <h5 style="margin: 0px; line-height: 2em;">presentation== |
* 생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br> 여기서 <math>\sigma_i=(i, i+1)</math><br> | * 생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br> 여기서 <math>\sigma_i=(i, i+1)</math><br> | ||
34번째 줄: | 34번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">방정식에의 응용[[방정식과 대칭성 : 치환군| 치환군]] | + | <h5 style="margin: 0px; line-height: 2em;">방정식에의 응용[[방정식과 대칭성 : 치환군| 치환군]]== |
* [[방정식과 대칭성 : 치환군]]<br> | * [[방정식과 대칭성 : 치환군]]<br> | ||
42번째 줄: | 42번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들== |
* [[사다리타기의 수학]]<br> | * [[사다리타기의 수학]]<br> | ||
54번째 줄: | 54번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모== |
* http://mathoverflow.net/questions/10635/why-are-the-characters-of-the-symmetric-group-integer-valued | * http://mathoverflow.net/questions/10635/why-are-the-characters-of-the-symmetric-group-integer-valued | ||
65번째 줄: | 65번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사== |
76번째 줄: | 76번째 줄: | ||
− | ==매스매티카 파일 및 계산 리소스 | + | ==매스매티카 파일 및 계산 리소스== |
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjJmYTU3ZmQtYTcxMC00MmMxLWIyNDAtYjk1NmJhOTg0MTEy&sort=name&layout=list&num=50 | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjJmYTU3ZmQtYTcxMC00MmMxLWIyNDAtYjk1NmJhOTg0MTEy&sort=name&layout=list&num=50 | ||
93번째 줄: | 93번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* http://www.google.com/dictionary?langpair=en|ko&q= | * http://www.google.com/dictionary?langpair=en|ko&q= | ||
107번째 줄: | 107번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
123번째 줄: | 123번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문== |
* [http://www.jstor.org/stable/2324961 Symmetries of the Cube and Outer Automorphisms of S6] | * [http://www.jstor.org/stable/2324961 Symmetries of the Cube and Outer Automorphisms of S6] | ||
135번째 줄: | 135번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
149번째 줄: | 149번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사== |
* 네이버 뉴스 검색 (키워드 수정)<br> | * 네이버 뉴스 검색 (키워드 수정)<br> | ||
161번째 줄: | 161번째 줄: | ||
− | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그 | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그== |
* 구글 블로그 검색<br> | * 구글 블로그 검색<br> |
2012년 11월 1일 (목) 12:14 판
이 항목의 스프링노트 원문주소==
개요==
- 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
- \(n!\) 개의 원소가 존재함
- 대칭군의 부분군은 치환군(permutation group)이라 불림
presentation==
- 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\)
여기서 \(\sigma_i=(i, i+1)\)
- 관계식
- \({\sigma_i}^2 = 1\)
- \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\) (즉 \(|i-j|\geq 2\))
- \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\\) (또는 \((\sigma_i\sigma_{i+1})^3=1\) 로 쓸 수 있다)
- 이로부터 대칭군은 유한반사군과 콕세터군(finite reflection groups and Coxeter groups) 임을 알 수 있다
\(\left\langle \sigma_1,\cdots \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle\)
방정식에의 응용 치환군==
관련된 항목들==
메모==
- http://mathoverflow.net/questions/10635/why-are-the-characters-of-the-symmetric-group-integer-valued
- \(S_6\)는 항등원이 아닌 outer automorphism을 가짐
역사==
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjJmYTU3ZmQtYTcxMC00MmMxLWIyNDAtYjk1NmJhOTg0MTEy&sort=name&layout=list&num=50
- http://www.wolframalpha.com/input/?i=
- http://functions.wolfram.com/
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
- Numbers, constants and computation
수학용어번역==
사전 형태의 자료==
관련논문==
관련도서==
관련기사==
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=사다리타기
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=사다리타기수학
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
블로그==
- 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
- \(n!\) 개의 원소가 존재함
- 대칭군의 부분군은 치환군(permutation group)이라 불림
- 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\)
여기서 \(\sigma_i=(i, i+1)\) - 관계식
- \({\sigma_i}^2 = 1\)
- \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\) (즉 \(|i-j|\geq 2\))
- \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\\) (또는 \((\sigma_i\sigma_{i+1})^3=1\) 로 쓸 수 있다)
- \({\sigma_i}^2 = 1\)
- 이로부터 대칭군은 유한반사군과 콕세터군(finite reflection groups and Coxeter groups) 임을 알 수 있다
\(\left\langle \sigma_1,\cdots \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle\)
- http://mathoverflow.net/questions/10635/why-are-the-characters-of-the-symmetric-group-integer-valued
- \(S_6\)는 항등원이 아닌 outer automorphism을 가짐
- 네이버 뉴스 검색 (키워드 수정)
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=사다리타기
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=사다리타기수학
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
- http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=