"대칭군 (symmetric group)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
  
 
* [[대칭군 (symmetric group)]]
 
* [[대칭군 (symmetric group)]]
7번째 줄: 7번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요==
  
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
 
* 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
17번째 줄: 17번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">presentation</h5>
+
<h5 style="margin: 0px; line-height: 2em;">presentation==
  
 
*  생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br> 여기서 <math>\sigma_i=(i, i+1)</math><br>
 
*  생성원 <math>\sigma_1, \ldots, \sigma_{n-1}</math><br> 여기서 <math>\sigma_i=(i, i+1)</math><br>
34번째 줄: 34번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">방정식에의 응용[[방정식과 대칭성 : 치환군| 치환군]]</h5>
+
<h5 style="margin: 0px; line-height: 2em;">방정식에의 응용[[방정식과 대칭성 : 치환군| 치환군]]==
  
 
* [[방정식과 대칭성 : 치환군]]<br>
 
* [[방정식과 대칭성 : 치환군]]<br>
42번째 줄: 42번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련된 항목들==
  
 
* [[사다리타기의 수학]]<br>
 
* [[사다리타기의 수학]]<br>
54번째 줄: 54번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모</h5>
+
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">메모==
  
 
* http://mathoverflow.net/questions/10635/why-are-the-characters-of-the-symmetric-group-integer-valued
 
* http://mathoverflow.net/questions/10635/why-are-the-characters-of-the-symmetric-group-integer-valued
65번째 줄: 65번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">역사==
  
 
 
 
 
76번째 줄: 76번째 줄:
 
 
 
 
  
==매스매티카 파일 및 계산 리소스</h5>
+
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjJmYTU3ZmQtYTcxMC00MmMxLWIyNDAtYjk1NmJhOTg0MTEy&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZjJmYTU3ZmQtYTcxMC00MmMxLWIyNDAtYjk1NmJhOTg0MTEy&sort=name&layout=list&num=50
93번째 줄: 93번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역==
  
 
* http://www.google.com/dictionary?langpair=en|ko&q=
 
* http://www.google.com/dictionary?langpair=en|ko&q=
107번째 줄: 107번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">사전 형태의 자료==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
123번째 줄: 123번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련논문==
  
 
* [http://www.jstor.org/stable/2324961 Symmetries of the Cube and Outer Automorphisms of S6]
 
* [http://www.jstor.org/stable/2324961 Symmetries of the Cube and Outer Automorphisms of S6]
135번째 줄: 135번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련도서==
  
 
*  도서내검색<br>
 
*  도서내검색<br>
149번째 줄: 149번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">관련기사==
  
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
*  네이버 뉴스 검색 (키워드 수정)<br>
161번째 줄: 161번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그</h5>
+
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">블로그==
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>

2012년 11월 1일 (목) 12:14 판

이 항목의 스프링노트 원문주소==    
개요==
  • 원소의 개수가 n인 집합의 전단사함수들의 모임으로 군을 이룸
  • \(n!\) 개의 원소가 존재함
  • 대칭군의 부분군은 치환군(permutation group)이라 불림
   
presentation==
  • 생성원 \(\sigma_1, \ldots, \sigma_{n-1}\)
    여기서 \(\sigma_i=(i, i+1)\)
  • 관계식
    • \({\sigma_i}^2 = 1\)
    • \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\) (즉 \(|i-j|\geq 2\))
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\\) (또는 \((\sigma_i\sigma_{i+1})^3=1\) 로 쓸 수 있다)
  • 이로부터  대칭군은 유한반사군과 콕세터군(finite reflection groups and Coxeter groups) 임을 알 수 있다
    \(\left\langle \sigma_1,\cdots \sigma_{n-1}\mid \sigma_1^2=\cdots=\sigma_{n-1}^2=1, (\sigma_i\sigma_{i+1})^{3}=1, i=1,\cdots, n-2\right\rangle\)
       
방정식에의 응용 치환군==    
관련된 항목들==      
메모==    
역사==      

매스매티카 파일 및 계산 리소스

 

 

 

수학용어번역==      
사전 형태의 자료==  
관련논문==    
관련도서==    
관련기사==    
블로그==