"르장드르 다항식(associated Legendre polynomials)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 스프링노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 스프링노트 원문주소== |
* [[르장드르 다항식(associated Legendre polynomials)]] | * [[르장드르 다항식(associated Legendre polynomials)]] | ||
7번째 줄: | 7번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">개요== |
* 미분방정식<br><math>(1-x^2)\,y'' -2xy' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)\,y = 0,\,</math><br> | * 미분방정식<br><math>(1-x^2)\,y'' -2xy' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)\,y = 0,\,</math><br> | ||
19번째 줄: | 19번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 2em;">예: l=2 인 경우 | + | <h5 style="margin: 0px; line-height: 2em;">예: l=2 인 경우== |
<math>P_{2}^{0}(x)=\frac{1}{2}(3x^{2}-1)</math> | <math>P_{2}^{0}(x)=\frac{1}{2}(3x^{2}-1)</math> | ||
33번째 줄: | 33번째 줄: | ||
− | ==역사 | + | ==역사== |
46번째 줄: | 46번째 줄: | ||
− | ==메모 | + | ==메모== |
52번째 줄: | 52번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
* [[구면조화함수(spherical harmonics)]] | * [[구면조화함수(spherical harmonics)]] | ||
61번째 줄: | 61번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | * 단어사전 http://www.google.com/dictionary?langpair=en|ko&q= | ||
74번째 줄: | 74번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
89번째 줄: | 89번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
* http://www.ams.org/mathscinet | * http://www.ams.org/mathscinet | ||
* http://dx.doi.org/ | * http://dx.doi.org/ |
2012년 11월 1일 (목) 13:47 판
이 항목의 스프링노트 원문주소==
개요==
- 미분방정식
\((1-x^2)\,y'' -2xy' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)\,y = 0,\,\)
- 미분방정식의 해
\(P_\ell^{m}(x) = (-1)^m\ (1-x^2)^{m/2}\ \frac{d^m}{dx^m}\left(P_\ell(x)\right)\,\)
여기서 \(P_\ell(x)\) 은 르장드르 다항식
- l과 m이 일반적인 복소수인 경우는 http://en.wikipedia.org/wiki/Legendre_function 참조
예: l=2 인 경우==
\(P_{2}^{0}(x)=\frac{1}{2}(3x^{2}-1)\)
\(P_{2}^{1}(x)=-3x(1-x^2)^{1/2}\)
\(P_{2}^{2}(x)=3(1-x^2)\)
역사
- http://www.google.com/search?hl=en&tbs=tl:1&q=
- Earliest Known Uses of Some of the Words of Mathematics
- Earliest Uses of Various Mathematical Symbols
- 수학사연표
메모
관련된 항목들
수학용어번역==
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Associated_Legendre_polynomials
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- 미분방정식
\((1-x^2)\,y'' -2xy' + \left(\ell[\ell+1] - \frac{m^2}{1-x^2}\right)\,y = 0,\,\) - 미분방정식의 해
\(P_\ell^{m}(x) = (-1)^m\ (1-x^2)^{m/2}\ \frac{d^m}{dx^m}\left(P_\ell(x)\right)\,\)
여기서 \(P_\ell(x)\) 은 르장드르 다항식 - l과 m이 일반적인 복소수인 경우는 http://en.wikipedia.org/wiki/Legendre_function 참조
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Associated_Legendre_polynomials
- http://en.wikipedia.org/wiki/
- http://www.proofwiki.org/wiki/
- http://www.wolframalpha.com/input/?i=
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences