삼각함수의 값
이 항목의 스프링노트 원문주소
개요
- 유리수\(a\in\mathbb{Q}\)에 대하여 \(x=a\pi\)일 때 삼각함수의 값을 구하는 문제는 수학적으로 중요
- 원분다항식(cyclotomic polynomial)의 해와 깊은 관련이 있음
- 가령 가우스와 정17각형의 작도는 다음과 같은 코사인 값을 얻는 것과 같은 문제
\(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)
문제의 수준
삼각함수의 값
\(\cos {\frac{2\pi}{1}} = 1\)
\(\cos {\frac{2\pi}{2}} = -1\)
\(\cos {\frac{2\pi}{3}} = -\frac{1}{2}\)
\(\cos\frac{2\pi}{4}=0\)
\(\cos\frac{2\pi}{5}=\frac{\sqrt5 -1}{4}\)
\(\cos\frac{2\pi}{6}=\frac{1}{2}\)
\(\cos\frac{2\pi}{7}=\frac{-1+\sqrt[3]{\frac{7}{2} \left(1-3 \sqrt{-3}\right)}+\sqrt[3]{\frac{7}{2} \left(1+3 \sqrt{-3}\right)}}{6}\)
- \(x^3 + x^2 - 2 x - 1=0\) 을 풀어야 함
\(\cos\frac{2\pi}{8}=\frac{\sqrt{2}}{2}\)
\(\cos \frac{2\pi}{17}= \frac{-1+\sqrt{17}+\sqrt{34-2\sqrt{17}}+ \sqrt{68+12\sqrt{17}-4{\sqrt{170+38\sqrt{17}}}} }{16}\)
\(\cos\frac{\pi}{4}=\cos\frac{\pi}{2^2}= \frac{\sqrt{2}}{2}\)
\(\cos \frac{\pi}{8}=\cos\frac{\pi}{2^3}= \frac{\sqrt{2+\sqrt{2}}}{2}\)
\(\cos \frac{\pi}{16}=\cos\frac{\pi}{2^4}= \frac{\sqrt{2+\sqrt{2+\sqrt{2}}}}{2}\)
\(\cos \frac{\pi}{32}=\cos\frac{\pi}{2^5}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}{2}\)
\(\cos \frac{\pi}{64}=\cos\frac{\pi}{2^6}= \frac{\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}}}{2}\)
\(\tan \frac{\pi}{8}=\sqrt{2}-1\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)