이산 푸리에 변환

수학노트
http://bomber0.myid.net/ (토론)님의 2012년 1월 7일 (토) 11:51 판
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

 

개요
  • 정의
    \(\hat{x}(n)=\sum _{n=0}^{N-1} x(n) e^{-\frac{(2 \pi i) k n}{N}}, k = 0, \cdots, N-1\)

 

 

N=3인 경우의 행렬표현

\(\left( \begin{array}{ccc} 1 & 1 & 1 \\ 1 & e^{-\frac{2 i \pi }{3}} & e^{\frac{2 i \pi }{3}} \\ 1 & e^{\frac{2 i \pi }{3}} & e^{-\frac{2 i \pi }{3}} \end{array} \right)\)

 

 

 

\(x(n)=\cos \left(\frac{2 \pi n}{8}\right), n=0,1,\cdots, 7\)

즉 벡터 \(\left\{1,\frac{1}{\sqrt{2}},0,-\frac{1}{\sqrt{2}},-1,-\frac{1}{\sqrt{2}},0,\frac{1}{\sqrt{2}}\right\}\) 의 푸리에 변환은 \(\{0,4,0,0,0,0,0,4\}\) 로 주어진다

 

 

 

 

 

역사

 

 

 

메모

 

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문, 에세이, 강의노트

 

 

 

관련논문

 

 

관련도서