Kissing number and sphere packings

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 10월 31일 (수) 09:21 판 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

==개요

  • Kissing number
    • 각 차원에서 주어진 구의 주변에 같은 크기의 구를 최대 몇 개까지 접하도록 배치할수 있는가의 문제
    • 1차원에서는 2, 2차원에서는 6, 3차원에서는 12, 4차원에서는 24
      [/pages/1964116/attachments/1242358 2d.gif]
      2차원의 kissing number = 6
    • 8차원에서는 240, 24차원에서는 196560 임이 알려져 있음.
      • 이는 8차원의 E8, 24차원의 리치(Leech)격자에 의해 얻어짐.
    • 나머지 차원은 아직 미해결.
  • Sphere packings
    • n차원 공간을 가장 효율적으로 채우는 구의 배치는 무엇인가의 문제
    • 일반적인 경우는 매우 어렵고, 좀더 접근이 가능한 경우인 격자 모양의 배치가 수학적으로 중요한 문제.

 

 

==1차원


 

==2차원


 

 

==3차원

  • kissing number = 12
    [[Media:|Media:]]
  • [Musin05]

 

 

==4차원

  • 24
  • 2003년 Oleg R. Musin에 의해 증명
  • [Musin05],'[Musin2008]'

 

 

==고차원

  • 5차원 이상에서는 8,24 차원을 제외하고 미해결
  • 8차원에서는 240, 24차원에서는 196560 임이 알려져 있음.

 

 

==메모

 

 

 

==역사

 

==관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

==관련된 대학원 과목

 

 

==관련된 항목들

 

 

수학용어번역

 

 

==사전 형태의 자료

 

 

 

==리뷰논문, 에세이, 강의노트

 

 

 

==관련논문

 

 

==관련도서

  • Sphere Packings, Lattices and Groups (Grundlehren der mathematischen Wissenschaften)
    • John Horton Conway, Neil J. A. Sloane
    • 이 분야의 가장 표준적인 도서
  • 케플러의 추측