Q-감마함수
http://bomber0.myid.net/ (토론)님의 2009년 12월 18일 (금) 16:50 판
이 항목의 스프링노트 원문주소
개요
- #의 q-analogue
정의
- q-팩토리얼
\([n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\)
\([n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}\) - \([n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)