Q-감마함수

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 5월 20일 (목) 05:01 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요
  • #의 q-analogue

 

 

정의
  • 감마함수가 팩토리얼의 확장이므로 q-팩토리얼의 정의를 이용하자
    \([n]_q!= \frac{(q;q)_n}{(1-q)^n}=\frac{(1-q)_q^n}{(1-q)^n}\)
  • Pochhammer 기호와 캐츠(Kac) 기호를 사용하여 더 일반적인 경우의 n 에 대하여 쓸 수 있다
    \([n]_q!= \frac{(q;q)_n}{(1-q)^n}= \frac{(q;q)_{\infty}}{(1-q)^n(q^{n+1};q)_{\infty}}\)
    \([n]_q!=\frac{(1-q)_q^n}{(1-q)^n}=\frac{(1-q)_q^{\infty}}{(1-q)^n(1-q^{n+1})_q^{\infty}}\)
  • 위의 식은 \(n\)이 반드시 자연수가 아니어도 성립하므로, q-감마함수를 다음과 같이 정의할 수 있다
    \(\Gamma_q(z)= \frac{(q;q)_{\infty}}{(q^{z};q)_{\infty}}(1-q)^{1-z}\)
    \(\Gamma_q(z)= \frac{(1-q)_q^{\infty}}{(1-q^{z})_q^{\infty}}(1-q)^{1-z}\)
    \(\Gamma_q(z) = (1-q)^{1-z}\prod_{n=0}^\infty \frac{1-q^{n+1}}{1-q^{z+n}}. \)

 

 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그