Cyclotomic numbers and Chebyshev polynomials

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 3월 26일 (금) 10:35 판
둘러보기로 가기 검색하러 가기
introduction
  • borrowed from Andrews-Gordon identity
  • quantum dimension and there recurrence relation
    \(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}\) satisfies
    \(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)

 

  1. (*choose k for c (2,k+2) minimal model*)k := 11
    d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
    Table[{i, d[k, i]}, {i, 1, k}] // TableForm
    Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
       k}] // TableForm
  2. Plot[d[k, i], {i, 0, 2 k}]

 

 

cyclotomic numbers
  • Gauss sums
  • character tables of finite groups
  • values of Lie group characters at elements of finite order
  • quantum dimensions in RCFT
  • matrix entries in the modular group representation coming from rational VOAs
  • index of subfactors ?
  • 원분다항식(cyclotomic polynomial)

 

 

chebyshev polynomials

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links