Smyth formula for Mahler measures

수학노트
imported>Pythagoras0님의 2020년 11월 13일 (금) 02:47 판
둘러보기로 가기 검색하러 가기

introduction

thm [Smyth1981]

$$ m(1+x_1+x_2)=L_{-3}'(-1)=\frac{3\sqrt{3}}{4\pi}L(\chi_{-3},2)=0.3230659472\cdots \label{Smyth1} $$ where $$L(\chi_{-3},s)=\sum_{n=1}^{\infty}\frac{\chi_{-3}(n)}{n^s}=\frac{1}{1^s}-\frac{1}{2^s}+\frac{1}{4^s}-\frac{1}{5^s}+\cdots$$ $$ m(1+x_1+x_2+x_3)=14\zeta'(-2)=\frac{7}{2\pi^2}\zeta(3)=0.4262783988\cdots $$

two proofs of \ref{Smyth1}

  • direct calculation
  • using regulator


expositions

articles