Mirror symmetry

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 11월 13일 (금) 03:07 판
둘러보기로 가기 검색하러 가기

introduction

homological mirror symmetry

  • 1994 Kontsevich
  • categorical equivalence of the following two categories
    • derived category of bounded complexes of coherent sheaves on a smooth, complete, algebraic variety \(X\) over an algebraically closed field
    • Fukaya category of the symplectic manifold \(\tilde{X}\)


elliptic curve case

  • According to Kontsevich, the mirror partner of an algebraic manifold \(M\) should be a symplectic manifold \(\tilde{M}\) such that the derived category \(D^b(M)\) of bounded complexes of coherent sheaves on \(M\) is equivalent to a suitable version of Fukaya's category \(F(\tilde{M})\) of Lagrangian submanifolds of \(M\) equipped with a flat bundle. In this paper the authors verify this conjecture in the case when \(M\) is an elliptic curve \(E_{\tau}=\mathbb{C}/(\mathbb{Z}+\tau\mathbb{Z})\), where \(\tau=a+bi, b>0\). Here the mirror partner is a torus \(\tilde{E}=\mathbb{C}/(\mathbb{Z}+\mathbb{Z})\) with Kähler metric \(b(dx^2+dy^2)\). It is also equipped with a form \(B=a dx\wedge dy\). The authors give a beautiful, very explicit description of the two categories involved in the mirror duality.


related items


books


exposition

articles

  • Schaug, Andrew. “Quantum Mirror Symmetry for Borcea-Voisin Threefolds.” arXiv:1510.08333 [math-Ph], October 28, 2015. http://arxiv.org/abs/1510.08333.
  • Cao, Yalong, and Naichung Conan Leung. “Remarks on Mirror Symmetry of Donaldson-Thomas Theory for Calabi-Yau 4-Folds.” arXiv:1506.04218 [math-Ph], June 12, 2015. http://arxiv.org/abs/1506.04218.
  • Kanazawa, Atsushi, and Siu-Cheong Lau. “Geometric Transitions and SYZ Mirror Symmetry.” arXiv:1503.03829 [math], March 12, 2015. http://arxiv.org/abs/1503.03829.
  • Sheridan, Nicholas. “Homological Mirror Symmetry for Calabi-Yau Hypersurfaces in Projective Space.” arXiv:1111.0632 [math], November 2, 2011. http://arxiv.org/abs/1111.0632.
  • Hiep, Dang Tuan. “Rational Curves on Calabi-Yau Threefolds: Verifying Mirror Symmetry Predictions.” arXiv:1409.3712 [math], September 12, 2014. http://arxiv.org/abs/1409.3712.
  • Polishchuk, Alexander, and Eric Zaslow. 1998. “Categorical Mirror Symmetry: The Elliptic Curve.” Advances in Theoretical and Mathematical Physics 2 (2): 443–470.
  • Kontsevich, Maxim. 1995. “Homological Algebra of Mirror Symmetry.” In Proceedings of the International Congress of Mathematicians, Vol.\ 1, 2 (Zürich, 1994), 120–139. Basel: Birkhäuser. http://www.ams.org/mathscinet-getitem?mr=1403918.
  • Candelas, Philip, Xenia C. de la Ossa, Paul S. Green, and Linda Parkes. 1991. “A Pair of Calabi-Yau Manifolds as an Exactly Soluble Superconformal Theory.” Nuclear Physics. B 359 (1): 21–74. doi:10.1016/0550-3213(91)90292-6.
  • Greene, B. R., and M. R. Plesser. 1990. “Duality in Calabi-Yau Moduli Space.” Nuclear Physics. B 338 (1): 15–37. doi:10.1016/0550-3213(90)90622-K.
  • Candelas, P., M. Lynker, and R. Schimmrigk. 1990. “Calabi-Yau Manifolds in Weighted \(\bf P_4\).” Nuclear Physics. B 341 (2): 383–402. doi:10.1016/0550-3213(90)90185-G.