Lebesgue identity

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 6월 15일 (수) 14:56 판
둘러보기로 가기 검색하러 가기
introduction
  • [Alladi&Gordon1993] 278&279p
    \(f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}\)

 

 

fermionic form expression

\(f(a,z)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{\frac{i^2+2ij+j^2-i}{2}}}{(q)_{i}(q)_{j}}\)

(proof)

We use the q-binomial identity useful techniques in q-series

 \((-z;q)_{n}= \sum_{r=0}^{n} \begin{bmatrix} n\\ r\end{bmatrix}_{q}q^{r(r-1)/2}z^r\) and \((-zq;q)_{k}= \sum_{r=0}^{k} \begin{bmatrix} k\\ r\end{bmatrix}_{q}q^{r(r+1)/2}z^r\)

\(f(a,z)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}\)

\(=\sum_{k\geq 0}\frac{a^kq^{k(k-1)/2}}{(q)_{k}}\sum_{r=0}^{k} \begin{bmatrix} k\\ r\end{bmatrix}_{q}q^{r(r+1)/2}z^r\). Put \(j=r\) and \(i=k-j\).

\(=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{(i+j)(i+j-1)/2+j(j+1)/2}}{(q)_{i}(q)_{j}}\)

\(=\sum_{i,j\geq 0}\frac{a^{i+j}z^{j}q^{\frac{i^2+2ij+j^2-i}{2}}}{(q)_{i}(q)_{j}}\)  ■

  • here we get a 2x2 matrix (rank 2 case)
    \( \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}\)

 

 

Lebesgue's identity
  • Put a=q, c=z. we get the Lebesgue's identity.
    \(f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{k\geq 0}\frac{q^{k(k+1)/2}(-zq)_{k}}{(q)_{k}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}=\prod_{m=1}^{\infty} (1+zq^{2m})(1+q^{m})\)
  • special case : we get a rank 2 form of the Lebesgue's identity
    \(f(q,z)=\sum_{k\geq 0}\frac{q^{k}q^{k(k-1)/2}(-zq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{z^{j}q^{\frac{i^2+2ij+j^2+i+2j}{2}}}{(q)_{i}(q)_{j}}=(-zq^2;q^2)_{\infty}(-q)_{\infty}\)

 

 

specializations

(Theorem)

\(f(q,q^{-1})=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}=(-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{(q^2;q^4)_{\infty}}{(q;q^4)_{\infty}^2(q^3;q^4)_{\infty}^2}\)

\(f(q,1)=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+2j}{2}}}{(q)_{i}(q)_{j}}=(-q^2;q^2)_{\infty}(-q)_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{1}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\)

(proof)

useful techniques in q-series

\((-q)_{n}=\frac{(q^2;q^2)_{n}}{(q;q)_{n}}\)

\((-q;q^{2})_{n}=\frac{(-q;q)_{n}}{(-q^{2};q^{2})_{n}}=\frac{(q^{2};q^{2})_{n}(q^{2};q^{2})_{n}}{(q^{4};q^{4})_{n}(q;q)_{n}}=\frac{(q^{2};q^{4})_{n}}{(q^{1};q^{4})_{n}(q^{3};q^{4})_{n}}\) .

\((-q^2;q^{2})_{n}=\frac{(q^4;q^4)_{n}}{(q^2;q^2)_{n}}=\frac{1}{(q^2;q^4)_{n}}\)

Therefore

\(f(q,q^{-1})=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}=(-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{(q^2;q^4)_{\infty}}{(q;q^4)_{\infty}^2(q^3;q^4)_{\infty}^2}\)

\(f(q,1)=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+2j}{2}}}{(q)_{i}(q)_{j}}=(-q^2;q^2)_{\infty}(-q)_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{1}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\). ■

 

 

continued fraction expression
  • rank 2 continued fraction
  • [Alladi&Gordon1993] 277-278p
    Let \(f(a,c)=\sum_{k\geq 0}\frac{a^{k}q^{k(k-1)/2}(-cq)_{k}}{(q)_{k}}\).
    \(F(a,c)=\frac{f(a,c)}{f(aq,c)}=1+a+\frac{acq}{1+aq} {\ \atop+} \frac{acq^2}{1+aq^2}{\ \atop+} \frac{acq^3}{1} {\ \atop+\dots}\)
    \(R(a,b)=\frac{f(a,a^{-1}b)}{f(aq,a^{-1}b)}-a=\frac{R^{N}(a,b)}{R^{D}(a,b)}=1+\frac{bq}{1+aq} {\ \atop+} \frac{bq^2}{1+aq^2}{\ \atop+} \frac{bq^3}{1} {\ \atop+\dots}\)
    where
    \(R^{N}(a,b)=f(q,a^{-1}b)-af(aq,a^{-1}b)=f(aq,a^{-1}bq^{-1})=\sum_{k\geq 0}\frac{a^{k}q^{k(k+1)/2}(-a^{-1}b)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i}b^{j}q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}\)
    \(R^{D}(a,b)=f(aq,a^{-1}b)=\sum_{k\geq 0}\frac{a^{k}q^{k(k+1)/2}(-a^{-1}bq)_{k}}{(q)_{k}}=\sum_{i,j\geq 0}\frac{a^{i}b^{j}q^{\frac{i^2+2ij+j^2+i+2j}{2}}}{(q)_{i}(q)_{j}}\)
  • application
    \(R^N(1,1)=f(q,q^{-1})=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+j^2+i}{2}}}{(q)_{i}(q)_{j}}=(-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{(q^2;q^4)_{\infty}}{(q^1;q^4)_{\infty}^2(q^3;q^4)_{\infty}^2}\)
    \(R^{D}(1,1)=f(q,1)=\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2+i+2j}{2}}}{(q)_{i}(q)_{j}}=(-q^2;q^2)_{\infty}(-q)_{\infty}=\frac{(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{1}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\)
  • continued fraction
    \(R(1,1)=\frac{R^{N}(1,1)}{R^{D}(1,1)}=1+{q \over 1+q + } {q^2 \over 1+q^2+} {q^3 \over 1+q^3} } \cdots=\frac{(q^2;q^4)_{\infty}^2}{(q^1;q^4)_{\infty}(q^3;q^4)_{\infty}}\)

 

 

related dilogarithm identity

 

 

 

comparison with Rogers-Selberg identities
  • Rogers-Selberg identities
    \(AG_{3,3}(q)=\sum_{n_1,n_{2}\geq0}\frac{q^{n_{1}^2+2n_1n_2+2n_{2}^{2}}}{(q)_{n_1}(q)_{n_{2}}}=\prod_{r\neq 0,\pm 3 \pmod {7}}\frac{1}{1-q^r}=\frac{(q^3;q^7)_\infty (q^4; q^7)_\infty(q^7;q^7)_\infty}{(q)_\infty}\)
    \(A(q)W(q)=AG_{3,3}(q)\)
    where
    \(W(q)=(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}}{(q;q)_{\infty}}\)
  • Lebesgue's identity
    \(\frac{W(q)^2}{W(q^2)}=\sum_{i,j\geq 0}\frac{q^{(i^2+2ij+2j^2)/2+i/2}}{(q)_{i}(q)_{j}}\)

 

(proof)

Note that from useful techniques in q-series

\((-q;q^{2})_{\infty}=\frac{(-q;q)_{\infty}}{(-q^{2};q^{2})_{\infty}}=\frac{(q^{2};q^{2})_{\infty}(q^{2};q^{2})_{\infty}}{(q^{4};q^{4})_{\infty}(q;q)_{\infty}}=\frac{W(q)}{W(q^2)}\)

Therefore

\((-q;q^2)_{\infty}(-q)_{\infty}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{W(q)^2}{W(q^2)}\). ■

 

 

\(W(q)=\frac{\eta(2\tau)}{\eta(\tau)}\)

\(W(q^2)=\frac{\eta(4\tau)}{\eta(2\tau)}\)

\(\frac{W(q)^2}{W(q^2)}=\frac{(q^{2};q^{2})_{\infty}^3}{(q;q)_{\infty}^2(q^{4};q^{4})_{\infty}}=\frac{\eta(2\tau)^3}{\eta(\tau)^2\eta(4\tau)}=\sum_{i,j\geq 0}\frac{q^{(i^2+2ij+2j^2)/2+i/2}}{(q)_{i}(q)_{j}}\)

\(W(q^2)W(q)=\frac{\eta(4\tau)}{\eta(\tau)}=q^{1/8}\sum_{i,j\geq 0}\frac{q^{\frac{i^2+2ij+2j^2}{2}+\frac{i+2j}{2}}}{(q)_{i}(q)_{j}}=\frac{q^{1/8}(q^4;q^4)_{\infty}}{(q;q)_{\infty}}=\frac{q^{1/8}}{(q^1;q^4)_{\infty}(q^2;q^4)_{\infty}(q^3;q^4)_{\infty}}\)

eta product and eta quotient

 

 

 

KdV equation

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links