Braid group

수학노트
imported>Pythagoras0님의 2020년 11월 13일 (금) 07:21 판
둘러보기로 가기 검색하러 가기

review of symmetric groups

  • 원소의 개수가 n인 집합의 전단사함수들의 모임
  • \(n!\) 개의 원소가 존재함
  • 대칭군의 부분군은 치환군(permutation group)이라 불림



presentation of symmetric groups

  • \(S_n\)
  • generators \(\sigma_1, \ldots, \sigma_{n-1}\)
  • relations
    • \({\sigma_i}^2 = 1\)
    • \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\)
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\)


presentation of braid groups

  • \(B_n\)
  • generators \(\sigma_1,...,\sigma_{n-1}\)
  • relations (known as the braid or Artin relations):
    • \(\sigma_i\sigma_j =\sigma_j \sigma_i\) whenever \(|i-j| \geq 2 \)
    • \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}\) for \(i = 1,..., n-2\)
  • Yang-Baxter equation (YBE)
  • For a solution of the YBE $\bar{R}$, we can construct a representation $\rho$ of the braid group by

$$ \rho : B_n \to \rm{Aut}(V^{\otimes n}) $$ where $\rho(\sigma_i)=\bar{R}_i$


There is also a natural surjective morphism from $B_n$ to the symmetric group $\mathfrak{S}_n$, given on the generators by $B_n\ni\sigma_i\mapsto s_i\in \mathfrak{S}_n$, $i=1,\dots,n-1$. For a braid $\beta\in B_n$, we denote $p_{\beta}$ its image in $\mathfrak{S}_n$, and refer to $p_{\beta}$ as to the underlying permutation of $\beta$.


examples

  • in a braid diagram, read from bottom to top and we number all strands of the braid with the indices it starts at the bottom

파일:Braid.png

  • read the braid word from left to right accordingly.
  • For instance, the braid word corresponding to the braid above is $\sigma_1^{-1}\sigma_2\sigma_1^{-1}\sigma_2\sigma_1^{-1}$

Markov moves

  • braid group version of Reidemeister moves


computational resource



related items

encyclopedia


expositions