Johnson–Lindenstrauss lemma

수학노트
Pythagoras0 (토론 | 기여)님의 2021년 2월 17일 (수) 01:28 판
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

노트

위키데이터

말뭉치

  1. The Johnson-Lindenstrauss Lemma (JL lemma) tells us that we need dimension , and that the mapping is a (random) linear mapping.[1]
  2. A variant of the Johnson–Lindenstrauss lemma for circulant matrices.[2]
  3. A simple short proof of the Johnson-Lindenstrauss lemma (concerning nearly isometric embeddings of finite point sets in lower-dimensional spaces) is given.[3]
  4. Earlier versions of the Johnson-Lindenstrauss lemma used a slightly different function .[4]
  5. It turns out that the Johnson-Lindenstrauss lemma is almost optimal.[4]
  6. Then, if we map the ‘s to points in while preserving distances up to a factor , then the dimension must be at least , which is nearly what the Johnson-Lindenstrauss lemma would give.[4]
  7. The Johnson-Lindenstrauss lemma very strongly depends on properties of the Euclidean norm.[4]

소스

메타데이터

위키데이터

Spacy 패턴 목록

  • [{'LOWER': 'johnson'}, {'OP': '*'}, {'LOWER': 'lindenstrauss'}, {'LEMMA': 'lemma'}]