단진자의 주기와 타원적분

수학노트
http://bomber0.myid.net/ (토론)님의 2010년 4월 30일 (금) 16:07 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요
  • 단진자의 운동을 기술하는 미분방정식은 다음과 같이 주어짐
    \({d^2\theta\over dt^2}+{g\over \ell} \sin\theta=0 \)
  • 보통의 경우, \(\theta\)가 0에 매우 가깝다고 가정하고, \(\sin\theta\approx \theta\)의 근사식을 이용하여 다음과 같은 미분방정식을 생각함
    \(d^2\theta\over dt^2}+{g\over \ell}\theta=0\)
  • 하지만 이러한 근사를 사용하지 않고 주기를 구하기 위해서는, 타원적분이 필요

 

 

단진자의 주기
  • 단진자의 주기는 다음과 같이 주어짐
    \(T = 4\sqrt{\ell\over {2g}}\int^{\theta_0}_0 {1\over\sqrt{\cos\theta-\cos\theta_0}}\,d\theta\)
    여기서 다음과 같은 치환을 사용하자.
    \(A=\sqrt{1-\cos\theta_0}\)
    \(\cos\theta-\cos\theta_0=(A\cos\phi)^2\)
    그러면,
     
    \(T = 4\sqrt{\ell\over {2g}}\int_{0}^{\frac{\pi}{2}} \frac{2A\sin \phi}{\sqrt{1-A^2\cos^4\phi}}\,d\phi=4\sqrt{\ell\over {2g}}\int_{0}^{1} \frac{2A}{\sqrt{1-A^2 x^4}}\,dx\)

 

 

재미있는 사실

 

 

역사

 

 

관련된 다른 주제들

 

 

수학용어번역

 

사전 형태의 자료

 

 

관련논문

 

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그