라그랑지의 네 제곱수 정리

수학노트
Pythagoras0 (토론 | 기여)님의 2012년 11월 1일 (목) 12:33 판 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소==    
개요==
  • 모든 자연수는 네 개의 제곱수의 합으로 표현가능하다
  • 1770년 라그랑지에 의해 증명
   
예==
  • \(3 &= 1^2 + 1^2 + 1^2 + 0^2\)
  • \(31 &= 5^2 + 2^2 + 1^2 + 1^2\)
  • \(310 &= 17^2 + 4^2 + 2^2 + 1^2\)
   
자코비의 네 제곱수 정리==
  • 라그랑지의 정리가 단지 가능하다는 결과라면, 자코비의 정리는 몇 가지의 방법으로 나타낼 수 있는지에 대한 결과
  • \(x_1^2+x_2^2+x_3^2+x_4^2=n\)의 정수해 \((x_1,x_2,x_3,x_4)\)의 개수, 즉 자연수 \(n\)을 네 정수의 제곱의 합으로 쓰는 방법의 수  \(r_4(n)\)에 대한 정리
    \(r_4(n)=8\sum_{m|n,4\nmid m}m\)
  • 자코비의 네제곱수 정리 항목 참조
   
역사==
  • 1770년 라그랑지가 증명
   
메모==    
관련된 항목들==    
수학용어번역==    
사전 형태의 자료==    
관련논문==    
관련도서 및 추천도서==    
블로그==