쿰머의 24개 초기하 미분방정식의 해

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 6월 28일 (화) 10:52 판
둘러보기로 가기 검색하러 가기
이 항목의 수학노트 원문주소

 

 

개요
  • \(0,1,\infty\) 각 세 점에서의 급수해를 통해 서로 다른 여섯개의 해를 얻고, 오일러-가우스 초기하함수에 서술된 오일러 변환을 통해 각 해의 여섯가지 표현을 얻어 24개를 얻는다
  • \(z=0\)에서의 급수해
    \(_2F_1(a,b;c;z)\)
    \(z^{1-c}{}_2F_1(b+1-c,a+1-c;2-c;z)\)
  • \(z=1\)에서의 급수해
    \(_2F_1(a,b;a+b+1-c;1-z)\)
    \((1-z)^{c-a-b}{}_2F_1(c-a,c-b;c+1-a-b;1-z)\)
  • \(z=\infty\)에서의 급수해
    \(z^{-a}{}_2F_1(a,a+1-c;a+1-b;z^{-1})\)
    \(z^{-b}{}_2F_1(b+1-c,b;b+1-a;z^{-1})\)

 

 

재미있는 사실

 

 

 

역사

 

 

 

메모[1]

 

 

관련된 항목들

 

 

수학용어번역

 

 

 

사전 형태의 자료

 

 

리뷰논문과 에세이

 

 

관련논문

 

 

관련도서

 

 

링크