페르마 소수
개요==
- 페르마소수란 \(F_n= 2^{2^n}+1\) 형태의 소수
- 3,5,17,257, 65537 다섯 가지만 알려져 있음.
- 페르마는 \(F_n= 2^{2^n}+1\) 가 모두 소수일 것이라 추측하였으나, 후에 오일러는 반례를 발견
\(F_5=641 \times 6700417\)
정다각형의 작도
- 정n각형이 자와 컴파스로 작도가능 \(\iff\) \(n=2^k p_1 p_2 \cdots p_r\) (k ,r은 0이상의 정수, \(p_1, p_2, \cdots, p_r\) 은 서로 다른 페르마소수)
- 정다각형의 작도와 가우스와 정17각형의 작도 항목을 참조
역사
관련된 항목들
- 3,5,17,257, 65537 다섯 가지만 알려져 있음.
\(F_5=641 \times 6700417\)