원주율과 연분수 Brouncker 의 공식

수학노트
Pythagoras0 (토론 | 기여)님의 2014년 1월 13일 (월) 16:41 판
둘러보기로 가기 검색하러 가기

개요

 

 

Brouncker 의 공식

  • 다음과 같은 원주율의 연분수 표현\[\frac{4}{\pi}=1+\cfrac{1}{2+\cfrac{9 }{2+\cfrac{25 }{2+\cfrac{49 }{2+\cfrac{81 }{2+\cfrac{121 }{2+\cfrac{169 }{2+\cfrac{225 }{2+\cdots}}}}}}}}\]
  • 역수는 다음과 같이 주어진다\[\frac \pi 4 = \cfrac{1}{1+\cfrac{1^2}{2+\cfrac{3^2}{2+\cfrac{5^2}{2+\cfrac{7^2}{2+\cfrac{9^2}{2+\ddots}}}}}}\]
  • 증명은 감마함수의 비와 라마누잔의 연분수 항목을 참조

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역


 

매스매티카 파일 및 계산 리소스

 

 

사전 형태의 자료


 

리뷰, 에세이, 강의노트

   

관련논문

  • Osler, Thomas J. 2009. “Lord Brouncker’s Forgotten Sequence of Continued Fractions for Pi.” International Journal of Mathematical Education in Science and Technology 41 (1): 105–110. doi:10.1080/00207390903189195.