BGG resolution

수학노트
imported>Pythagoras0님의 2016년 3월 6일 (일) 22:12 판 (→‎articles)
둘러보기로 가기 검색하러 가기

introduction

thm (Bernstein-Gelfand-Gelfand Resolution).

There is an exact sequence of Verma modules $$ 0 \to V_{w_0\cdot \lambda}\to \cdots \bigoplus_{w\in W, \ell(w)=k}V_{w\cdot \lambda}\to \cdots V_{\lambda}\to W_{\lambda}\to 0 $$ where $\ell(w)$ is the length of the Weyl group element $w$, $w_0$ is the Weyl group element of maximal length. Here $\rho$ is half the sum of the positive roots.


example of BGG resolution : $\mathfrak{sl}_2$

  • \(W_{\lambda}\) : irreducible highest weight module
  • \(V_{\lambda}\) : Verma modules
    • note that the Verma modules are free modules of rank 1 over \(\mathbb{C}[F]\) where $F$ is the annihilation operator of $\mathfrak{sl}_2$
  • \(\lambda ,-2+\lambda ,\cdots, -\lambda, -\lambda-2,\cdots\)
  • \(W_{\lambda}=V_{\lambda}/V_{-\lambda-2}\)
  • BGG resolution

\[0\to V_{-\lambda-2}\to V_{\lambda}\to W_{\lambda}\to 0\]

  • number of modules = 2 (=order of Weyl group in general)
  • character of W = alternating sum of characters of Verma modules

\[\chi_{W_{\lambda}}=\chi_{V_{\lambda}}-\chi_{V_{-\lambda-2}}=\frac{q^{\lambda}}{1-q^{-2}}-\frac{q^{-\lambda-2}}{1-q^{-2}}\]

\[ch(W_{\lambda})=\frac{\sum_{w\in W} (-1)^{\ell(w)}w(e^{\lambda+\rho})}{e^{\rho}\prod_{\alpha>0}(1-e^{-\alpha})}=\frac{q^{\lambda+1}-q^{-\lambda-1}}{q^{1}(1-q^{-2})}\] where I used \(\rho=1,\alpha=2\) and \(w(\lambda+\rho)=-\lambda-\rho\)


maps between Verma modules

  • 2 conditions to have non-zero homomorphisms \(V_{\lambda}\to V_{\mu}\) between two Verma modules
    • \(\lambda+\rho, \mu+\rho\) are in the same orbit of Weyl group
    • \(V_{\lambda}\leq V_{\mu}\), i.e. \(\lambda = \mu -\sum \alpha\), where the sum is over some positive roots.

example

  • SL2
    • \(\lambda = \mu -2n\), \(n=0,1,2,\cdots\)
    • \((\lambda+1)^2 = (\mu+1)^2\)


related items


books

  • James E. Humphreys, Representations of Semisimple Lie Algebras in the BGG Category O, Grad. Stud. Math., 94, Amer. Math. Soc., Providence, RI, 2008.


expositions

articles

  • Griffeth, Stephen, and Emily Norton. “Character Formulas and Bernstein-Gelfand-Gelfand Resolutions for Cherednik Algebra Modules.” arXiv:1511.00748 [math], November 2, 2015. http://arxiv.org/abs/1511.00748.
  • J. Bernstein, I. Gel'fand, and S. Gel'fand, A category of g-modules, Functional Anal. Appl. 10 (1976), 87-92
  • Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Differential Operators on the Base Affine Space and a Study of $\mathfrak{g}$-Modules’. In Lie Groups and Their Representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971), 21–64. Halsted, New York, 1975. http://www.ams.org/mathscinet-getitem?mr=0578996.
  • Bernšteĭn, I. N., I. M. Gel'fand, and S. I. Gel'fand. ‘Structure of Representations That Are Generated by Vectors of Highest Weight’. Akademija Nauk SSSR. Funkcional\cprime Nyi Analiz I Ego Priloženija 5, no. 1 (1971): 1–9.