Braid group
imported>Pythagoras0님의 2017년 5월 23일 (화) 18:27 판 (→presentation of braid groups)
review of symmetric groups
- 원소의 개수가 n인 집합의 전단사함수들의 모임
- \(n!\) 개의 원소가 존재함
- 대칭군의 부분군은 치환군(permutation group)이라 불림
presentation of symmetric groups
- \(S_n\)
- generators \(\sigma_1, \ldots, \sigma_{n-1}\)
- relations
- \({\sigma_i}^2 = 1\)
- \(\sigma_i\sigma_j = \sigma_j\sigma_i \mbox{ if } j \neq i\pm 1\)
- \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i\sigma_{i+1}\)
presentation of braid groups
- \(B_n\)
- generators \(\sigma_1,...,\sigma_{n-1}\)
- relations (known as the braid or Artin relations):
- \(\sigma_i\sigma_j =\sigma_j \sigma_i\) whenever \(|i-j| \geq 2 \)
- \(\sigma_i\sigma_{i+1}\sigma_i = \sigma_{i+1}\sigma_i \sigma_{i+1}\) for \(i = 1,..., n-2\)
- Yang-Baxter equation (YBE)
- For a solution of the YBE $\bar{R}$, we can construct a representation $\rho$ of the braid group by
$$ \rho : B_n \to \rm{Aut}(V^{\otimes n}) $$ where $\rho(\sigma_i)=\bar{R}_i$
There is also a natural surjective morphism from $B_n$ to the symmetric group $\mathfrak{S}_n$, given on the generators by $B_n\ni\sigma_i\mapsto s_i\in \mathfrak{S}_n$, $i=1,\dots,n-1$. For a braid $\beta\in B_n$, we denote $p_{\beta}$ its image in $\mathfrak{S}_n$, and refer to $p_{\beta}$ as to the underlying permutation of $\beta$.
examples
- in a braid diagram, read from bottom to top and we number all strands of the braid with the indices it starts at the bottom.
- read the braid word from left to right accordingly.
- For instance, the braid word corresponding to the braid on the left of Figure ? is $\sigma_1^{-1}\sigma_2\sigma_1^{-1}\sigma_2\sigma_1^{-1}$
Markov moves
- braid group version of Reidemeister moves
computational resource
encyclopedia
expositions
- Abad, Camilo Arias. 2014. “Introduction to Representations of Braid Groups.” arXiv:1404.0724 [math], April. http://arxiv.org/abs/1404.0724.