격자의 세타함수

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 7월 3일 (금) 16:52 판
둘러보기로 가기 검색하러 가기
정의
  • 격자 \(L\) 에 대하여 세타함수를 다음과 같이 정의함
    \(\theta_L(\tau)=\sum_{x\in L}q^{\frac{x^2}{2}}, q=e^{2\pi i \tau}\) 
  • 여기서 \(x^2\) 은 벡터 \(x\)의 norm 을 가리킴.
     
자코비 세타함수의 경우
  • 격자가 정수집합 \(\mathbb Z\) 로 주어진 경우의 세타함수.
    \(\theta(\tau)=\sum_{n\in \mathbb Z}q^{\frac{n^2}{2}}= \sum_{n=-\infty}^\infty \exp(\pi i n^2\tau)\), \(q=e^{2\pi i \tau}\)

 

세타함수의 모듈라 성질

(정리)

rank가 2n의 even unimodular 격자 \(L\)에 대하여 , 세타함수 \(\theta_L\) 은 모듈라 형식이 된다.

 

(증명)

먼저 cusp 에서의 푸리에 급수 조건은 정의에 당연히 만족된다. ( \(\theta_L(i\infty)=1\) 도 알 수 있음.)

 

상위 주제

 

 

 

하위페이지

 

 

재미있는 사실

 

 

역사

 

많이 나오는 질문과 답변

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

관련기사

 

 

블로그

 

이미지 검색

 

동영상