오차 함수

수학노트
Pythagoras0 (토론 | 기여)님의 2020년 12월 16일 (수) 11:30 판 (→‎노트: 새 문단)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

노트

  • example erf( X ) represents the error function of X .[1]
  • Compute the error function for these numbers.[1]
  • 0.5205 0.9539 0.9545 Compute the error function for the same numbers converted to symbolic objects.[1]
  • If the input argument is a vector or a matrix, erf returns the error function for each element of that vector or matrix.[1]
  • A coefficient table is included to allow evaluation of the error function and its various integrals.[2]
  • Because Magenta is not one of the product colors, the ERROR function is not executed.[3]
  • The table and diagram below show the form of the Gaussian error function.[4]
  • This module provides symbolic error functions.[5]
  • erfinv(Y) returns the value of the inverse error function for each element of Y .[6]
  • erfcinv(Y) returns the value of the inverse of the complementary error function for each element of Y .[6]
  • As p increases, the Least Pth error function approaches the minimax error function.[7]
  • The Least Pth error functions avoid this problem.[7]
  • For more information on the least-squares error function, refer back to Least-Squares Error Function (L2).[7]
  • The error function and its approximations can be used to estimate results that hold with high probability or with low probability.[8]
  • (z)} means that the error function is an odd function.[8]
  • The inverse error function is usually defined with domain (−1,1), and it is restricted to this domain in many computer algebra systems.[8]

소스