Bosonization
Pythagoras0 (토론 | 기여)님의 2020년 12월 28일 (월) 05:03 판
introduction
- Bosonization is a nonperturbative method
- Bosonization is a method for translating a fermionic theory into a bosonic theory, and eventually retranslating part of the latter into a new fermionic language (cf. the Luther-Emery model or the use of Majorana fermions).
- This translation process is exact in the continuum limit, but does not warrant an exact solution of the model, except in a few exceptional cases (e.g. the Tomonaga-Luttinger model).
- For the rest, one must rely on renormalization-group analyses, which generally complement bosonization.
Tomonaga-Luttinger model
- The Tomonaga-Luttinger (TL) model, a continuum theory of interacting fermions, can be translated into a theory of noninteracting bosons and solved exactly
Thirring model
CFT and bosonization
- The intimate relation between CFT and the conventional bosonization had became manifest when Dotsenko and Fateev represented the CFT correlation functions in terms of correlators of bosonic exponents (1984)
encyclopedia
books
- Bosonization and Strongly Correlated Systems
- http://www.worldscibooks.com/physics/2436.html
expositions
- Bosonization and strongly correlated systems
- A few aspects of bosonization in light front field theory
- http://www.google.com/url?sa=t&source=web&cd=12&ved=0CCIQFjABOAo&url=http%3A%2F%2Fpeople.web.psi.ch%2Fmudry%2FLECTURES_NOTES%2FSPRING10%2Flecture13nup.ps&rct=j&q=bosonization%20massive%20Thirring%20model&ei=lacDTr6WH4jCsAOL7ODoDQ&usg=AFQjCNH-Nz2ksruq-_2OrpT_LlA1do30EA&sig2=FrEt3dJxzpgnD0vj15t3fQ&cad=rja
- E. Miranda, Introduction to bosonization, Braz. J. Phys. vol.33 no.1 São Paulo Mar. 2003
- Rao, Sumathi, and Diptiman Sen. ‘An Introduction to Bosonization and Aome of Its Applications’. arXiv:cond-mat/0005492, 29 May 2000. http://arxiv.org/abs/cond-mat/0005492.
- Sénéchal, D. ‘An Introduction to Bosonization’. arXiv:cond-mat/9908262, 18 August 1999. http://arxiv.org/abs/cond-mat/9908262.
- Von Delft, Jan, and Herbert Schoeller. ‘Bosonization for Beginners --- Refermionization for Experts’. Annalen Der Physik 7, no. 4 (November 1998): 225–305. doi:10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L.
- Edward Frenkel, Free Field Realizations in Representation Theory, http://www.mathunion.org/ICM/ICM1994.2/Main/icm1994.2.1256.1269.ocr.pdf
articles
- Langmann, Edwin, and Per Moosavi. ‘Construction by Bosonization of a Fermion-Phonon Model’. arXiv:1503.01835 [math-Ph], 5 March 2015. http://arxiv.org/abs/1503.01835.
- Frenkel, E., and D. Gaitsgory. “Geometric Realizations of Wakimoto Modules at the Critical Level.” arXiv:math/0603524, March 21, 2006. http://arxiv.org/abs/math/0603524.
- Dotsenko, Vl. S. “The Free Field Representation of the su(2) Conformal Field Theory.” Nuclear Physics B 338, no. 3 (July 16, 1990): 747–58. doi:10.1016/0550-3213(90)90649-X.