그리스문자 및 특수문자모음

수학노트
http://bomber0.myid.net/ (토론)님의 2008년 10월 27일 (월) 13:53 판
둘러보기로 가기 검색하러 가기
       
\alpha \iota \varrho
\beta \kappa \sigma
\gamma \lambda \varsigma
\delta \mu \tau
\epsilon \nu \upsilon
\varepsilon \xi \phi
\zeta o o \varphi
\eta \pi \chi
\theta \varpi \psi
\vartheta \rho \omega
\Gamma \Xi \Phi
\Delta \Pi \Psi
\Theta \Sigma \Omega
\Lambda \Upsilon

 

\aleph \prime \forall
h \hbar \emptyset \exists
\imath \nabla \neg
\jmath \surd \flat
\ell \top \natural
\wp \bot \sharp
\Re \clubsuit
\Im \angle \diamondsuit
\partial \triangle \heartsuit
\infty \backslash \spadesuit
\ldots \cdots \vdots \ddots

 

arcsin \arcsin dim \dim log \log
arccos \arccos exp \exp max \max
arctan \arctan gcd \gcd min \min
arg \arg hom \hom Pr \Pr
cos \cos inf \inf sec \sec
cosh \cosh ker \ker sin \sin
cot \cot lg \lg sinh \sinh
coth \coth lim \lim sup \sup
csc \csc liminf \liminf tan \tan
deg \deg limsup \limsup tanh \tanh
det \det ln \ln

 

\sum \bigcap \bigodot
\prod \bigcup \bigotimes
\coprod \bigsqcup \bigoplus
\int \bigvee \biguplus
\oint \bigwedge
\pm \cap \vee
\mp \cup \wedge
\setminus \uplus \oplus
\cdot \sqcap \ominus
\times \sqcup \otimes
\ast \triangleleft \oslash
\star \triangleright \odot
\diamond \wr \dagger
\circ \bigcirc \ddagger
\bullet \bigtriangleup \amalg
\div \bigtriangledown
\leftarrow \longleftarrow \uparrow
\Leftarrow = \Longleftarrow \Uparrow
\rightarriw \longrightarrow \downarrow
\Rightarrow = \Longrightarrow \Downarrow
\leftrightarrow \longleftrightarrow \updownarrow
\Leftrightarrow \Longleftrightarrow \Updownarrow
\mapsto \longmapsto \nearrow
\hookleftarrow \hookrightarrow \searrow
\leftharpoonup \rightharpoonup \swarrow
\leftharpoondown \rightharpoondown \nwarrow
\rightleftharpoons

Delimiters


  normal:()[]()  

  \big:  

  \Big:  

  \bigg:  

  \Bigg:  


Marks above and below:

 

 

   
x+y+z \overline{x+y+z}
  \underline{x+y+z} x+y+z
x++xktimes \overbrace{x+\cdots+x}^{k\;\rm times}
  \underbrace{x+\cdots+x}_{k\;\rm times} x++xktimes
−−−−−−−−−−x1++xk \overleftarrow{x_1+\cdots+x_k}
  \overrightarrow{x_1+\cdots+x_k} −−−−−−−−−−x1++xk
{n \choose 2}   2n  
{n \brack 2}   2n  
{n \brace 2}   2n  
f(x)=\cases {
      x^2+1&\text{if $x<0$}\cr
      1-x&\text{otherwise}
}
  f(x)=\cases{x^2+1&\text{if $x<0$}\cr 1-x&\text{otherwise}}  
\pmatrix{1& 0\\ 0& 1}   1001  
\left[\matrix{a^2-b^2& -1\\ 1& 2ab}\right]   a2−b21−12ab
= \ne or \neq (same as \not=) \dagger
\le (same as \leq) \ddagger
\ge (same as \geq)
\{ (same as \lbrace)
\} (same as \rbrace)
\to (same as \rightarrow)
\gets (same as \leftarrow)
\owns (same as \ni)
\land (same as \wedge)
\lor (same as \vee)
\lnot (same as \neg)
(same as \vert)
(same as \Vert)

http://www.math.union.edu/~dpvc/jsmath/symbols/welcome.html 에서 가져옴.