모듈라 형식(modular forms)
이 항목의 스프링노트 원문주소==
개요
- 푸앵카레 상반평면에서 정의된 해석함수
- 모듈라 성질과 cusp에서의 푸리에전개를 가짐
- 별다른 언급이 없을 경우 \(q=e^{2\pi i\tau}\) 를 의미함
모듈라 성질
- weight 2k 인 모듈라 형식
- 모듈라 군(modular group)의 원소에 대하여 다음 조건을 만족시킴
\(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)\)
푸리에 전개
- cusp에서도 해석함수의 성질을 갖도록 해주기 위한 조건
\(f(\tau) = \sum_{n=0}^\infty a_n e^{2i\pi n\tau}\)
중요한 예
\(\Delta(\tau)=q\prod_{n>0}(1-q^n)^{24}=q-24q+252q^2+\cdots\)
구조 정리
(정리)
\(\mathbb{C}[E_4,E_6]=\oplus M_k\)
\(\{E_6^2, \Delta\}\)는 weight 12인 모듈라 형식의 기저가 된다.
메모==
\(d(\frac{az+b}{cz+d})=\frac{(acz+ad-acz-bc)}{(cz+d)^2}dz=(cz+d)^{-2}dz\)
하위페이지
역사==
관련된 항목들==
수학용어번역==
사전 형태의 자료==
관련논문==
관련도서==
관련기사==
블로그==
\(f \left( \frac{ a\tau +b}{ c\tau + d} \right) = (c\tau +d)^{2k} f(\tau)\)
\(f(\tau) = \sum_{n=0}^\infty a_n e^{2i\pi n\tau}\)
하위페이지