숫자 163

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 4월 29일 (수) 09:31 판
둘러보기로 가기 검색하러 가기
간단한 소개

\(\large e^{\pi \sqrt{163}}=262537412640768743.9999999999992500725\cdots\)

\(e^{\pi \sqrt{163}} - 262537412640768744 \approx 7.5 \times 10^{-13}\)

 

 

 

\(e^{\pi \sqrt{43}} = 884736743.9997774660349066619374620785\)
\(e^{\pi \sqrt{67}} = 147197952743.9999986624542245068292613\)
\(e^{\pi \sqrt{163}} = 262537412640768743.99999999999925007259\)

 

\(e^{\pi \sqrt{43}} \approx 884736744\)

 

\(e^{\pi \sqrt{67}} \approx 147197952744\)

 

\(e^{\pi \sqrt{163}} \approx 262537412640768744\)

 

셋 모두 끝 세 자리가 744

 

complex multiplication

 

 

j-invariant

\(j(\tau) = \frac{1}[[:틀:Q]] + 744 + 196884{q} + 21493760{q}^2 + 864299970{q}^3 + \cdots\)
이 때, \({q} = e^{2\pi i\tau}\)

\( j(\tau)= {E_4(\tau)^3\over \Delta(\tau)}= q^{-1}+744+196884q+21493760q^2+\cdots\)

 

\( E_4(\tau)=1+240\sum_{n>0}\sigma_3(n)q^n= 1+240q+2160q^2+\cdots\)

 

\((\sigma_3(n)=\sum_{d|n}d^3)\)

\(\Delta(\tau)= q\prod_{n>0}(1-q^n)^{24}= q-24q+252q^2+\cdots\)

 

 

\( j(\frac {-1+\sqrt{-43}} {2})=884736744\)

\( j(\frac {-1+\sqrt{-67}} {2})=147197952744\)

\( j(\frac {-1+\sqrt{-163}} {2})=262537412640768744\)

\(j({{\sqrt{-163}+1}\over{2}})\)

 

하위주제들

 

 

 

하위페이지

 

 

재미있는 사실
  • Ramanujan observed that \(\large e^{\pi \sqrt{163}}=262537412640768743.99999999999925\cdots\) is within \(10^{-12}\) of an integer and used this to obtain approximations to \(\pi\). In his Field’s Medal lecture, Richard Borcherds said that every mathematician should see once in his/her life why this should be the case, and this essay is an attempt to do just that.
관련된 단원

 

 

많이 나오는 질문

 

관련된 고교수학 또는 대학수학

 

 

관련된 다른 주제들

 

관련도서 및 추천도서

 

참고할만한 자료

 

 

관련기사

네이버 뉴스 검색 (키워드 수정)

 

 

블로그

 

이미지 검색

 

동영상