오일러 치환
http://bomber0.myid.net/ (토론)님의 2010년 5월 30일 (일) 04:05 판
이 항목의 스프링노트 원문주소
개요
- \(R(x,\sqrt{ax^2+bx+c})\)형태의 적분을 유리함수의 적분으로 바꾸는 변수치환 \(x=x(t)\)
- 유리함수의 적분은 인수분해를 통하여 가능하므로, 이러한 형태의 적분 문제를 완전히 이해하는 셈이 된다
- 이차곡선\(y^2=ax^2+bx+c\)를 유리함수 \(f,g\)를 사용하여 \(x=f(t), y=g(t)\)로 매개화할 수 있기 때문에 가능하다
- 삼각치환이 잘 작동하는 이유를 설명해준다
- 타원적분론을 공부하기 전에 이해하면 도움이 된다
제1오일러치환
- \(a>0\) 일때, \(\sqrt{ax^2+bx+c}=t-\sqrt{a}x\) 로 치환
- 예
\(\int\sqrt{x^2-4}\,dx\)
\(\sqrt{x^2-4}=t-x\)
\(x=\frac{4+t^2}{2t}\)
\(\int \frac{2t^4-16t^2+32}{8t^3}\,dt\)
제2오일러치환
- \(c>0\) 일때, \(\sqrt{ax^2+bx+c}=xt+\sqrt{c}\) 로 치환
- 예
\(\int \frac{\sqrt{1-x^2}}{x}\,dx\)
\(\sqrt{1-x^2}=xt+1\)
\(x=\frac{2t}{t^2+1}\)
\(\int \frac{1+2 t^2-3 t^4}{t \left(1+t^2\right)^2}\,dt\)
제3오일러치환
- \(ax^2+bx+c=0\)가 두 실근u,v를 가질때, \(\sqrt{ax^2+bx+c}=t(x-u)\)로 치환
- 예
\(\int\sqrt{x^2-4}\,dx\)
\(\sqrt{x^2-4}=t(x-2)\)
\(x=\frac{2t^2+2}{t^2-1}\)
\(\int \frac{2t^4-16t^2+32}{8t^3}\,dt\)
타원적분
- 유리함수 R에 대한 \(R(x,\sqrt{x^3+ax^2+bx+c})\) 의 부정적분
\(\int R(x,\sqrt{x^3+ax^2+bx+c})\,dx\)
단, \(x^3+ax^2+bx+c\)는 서로 다른 해를 가짐 - 곡선 \(y^2=x^3+ax^2+bx+c\)는 위에서처럼 적당한 유리함수 \(x=f(t), y=g(t)\) 로 매개화할 수 없기 때문에, 이야기가 달라지게 된다
- 타원적분
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
- [1]http://bomber0.byus.net/index.php/2009/02/04/982
- http://www.goiit.com/posts/list/integration-euler-s-substitution-354.htm
http://pauli.uni-muenster.de/~munsteg/arnold.html - 삼각치환
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://planetmath.org/encyclopedia/EulersSubstitutionsForIntegration.html
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)