원분다항식(cyclotomic polynomial)

수학노트
http://bomber0.myid.net/ (토론)님의 2011년 11월 8일 (화) 03:03 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

개요

 

 

정의
  • \(\Phi_n(X) = \prod_\omega (X-\omega)\)
    • 여기서 \(\omega\)는 primitive n-th root of unity (단위근)
  • 차수는 오일러의 totient 함수 를 사용하여 \(\varphi(n)\) 로 표현됨

 

 

원분다항식 목록

\(\begin{array}{l|ll} & $\phi (n) & \phi _n(x) \\ \hline 1 & 1 & -1+x \\ 2 & 1 & 1+x \\ 3 & 2 & 1+x+x^2 \\ 4 & 2 & 1+x^2 \\ 5 & 4 & 1+x+x^2+x^3+x^4 \\ 6 & 2 & 1-x+x^2 \\ 7 & 6 & 1+x+x^2+x^3+x^4+x^5+x^6 \\ 8 & 4 & 1+x^4 \\ 9 & 6 & 1+x^3+x^6 \\ 10 & 4 & 1-x+x^2-x^3+x^4 \\ 11 & 10 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10} \\ 12 & 4 & 1-x^2+x^4 \\ 13 & 12 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12} \\ 14 & 6 & 1-x+x^2-x^3+x^4-x^5+x^6 \\ 15 & 8 & 1-x+x^3-x^4+x^5-x^7+x^8 \\ 16 & 8 & 1+x^8 \\ 17 & 16 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16} \\ 18 & 6 & 1-x^3+x^6 \\ 19 & 18 & 1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9+x^{10}+x^{11}+x^{12}+x^{13}+x^{14}+x^{15}+x^{16}+x^{17}+x^{18} \\ 20 & 8 & 1-x^2+x^4-x^6+x^8 \end{array}\)

 

역사

 

 

 

관련된 다른 주제들

 

 

수학용어번역

 

 

매스매티카 파일 및 계산 리소스

 

 

사전형태의 참고자료