버치와 스위너톤-다이어 추측
http://bomber0.myid.net/ (토론)님의 2010년 3월 1일 (월) 08:52 판
이 항목의 스프링노트 원문주소
개요
- 타원곡선의 rank는 잘 알려져 있지 않다
- Birch and Swinnerton-Dyer 추측은 타원곡선의 rank에 대한 밀레니엄 추측의 하나이다
유리수해
- \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)
타원곡선의 L-함수
- Hasse-Weil 제타함수라고도 함
- 타원 곡선 E의 conductor가 N일 때, 다음과 같이 정의됨
\(L(s,E)=\prod_pL_p(s,E)^{-1}\)
여기서
\(L_p(s,E)=\left\{\begin{array}{ll} (1-a_pp^{-s}+p^{1-2s}), & \mbox{if }p\nmid N \\ (1-a_pp^{-s}), & \mbox{if }p||N \\ 1, & \mbox{if }p^2|N \end{array}\right\) - 여기서 \(a_p\)는 유한체위에서의 해의 개수와 관련된 정수
추측
- \(E(\mathbb{Q})=\mathbb{Z}^r \oplus E(\mathbb{Q})_{\operatorname{Tor}}\)의 rank r은 \(\operatorname{Ord}_{s=1}L(s,E)\)와 같다
재미있는 사실
- Math Overflow http://mathoverflow.net/search?q=
- 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
역사
메모
관련된 항목들
수학용어번역
- 단어사전 http://www.google.com/dictionary?langpair=en%7Cko&q=
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
- Heegner points and derivatives of L-series. II
- Gross, B.; Kohnen, W.; Zagier, D. (1987), Mathematische Annalen 278 (1–4): 497–562
- Gross, B.; Kohnen, W.; Zagier, D. (1987), Mathematische Annalen 278 (1–4): 497–562
- Heegner points and derivatives of L-series
- Gross, Benedict H.; Zagier, Don B. (1986), Inventiones Mathematicae 84 (2): 225–320
- Gross, Benedict H.; Zagier, Don B. (1986), Inventiones Mathematicae 84 (2): 225–320
- On the Conjecture of Birch and Swinnerton-Dyer for an Elliptic Curve of Rank 3
- Joe P. Buhler, Benedict H. Gross and Don B. Zagier, Mathematics of Computation, Vol. 44, No. 170 (Apr., 1985), pp. 473-481
관련도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)