타원 둘레의 길이
http://bomber0.myid.net/ (토론)님의 2010년 4월 20일 (화) 18:17 판
이 항목의 스프링노트 원문주소
개요
- 초등함수를 사용하여 닫힌형태로 표현할 수 없고, 타원적분이 필요하다
- 역사적으로 타원의 둘레의 길이를 구하는 적분에서 타원적분의 이름이 붙여짐
타원 둘레 길이의 유도
- 타원 \(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\)의 둘레의 길이는 다음과 주어짐.
- 매개화
\(x=a \sin \theta\), \(y=a \cos \theta\), \(0\leq \theta \leq 2\pi\) -
\(4\int^{\frac{\pi}{2}}_{0}\sqrt{a^2\cos^2\theta+b^2\sin^2\theta}d\theta=4\int^{\frac{\pi}{2}}_{0}\sqrt{a^2+(b^2-a^2)\sin^2\theta}d\theta\)
\(=4\int^{\frac{\pi}{2}}_{0}a\sqrt{1-(1-\frac{b^2}{a^2})\sin^2\theta}d\theta=4a\int^{\frac{\pi}{2}}_{0}\sqrt{1-k^2\sin^2\theta}d\theta=4aE(k)\)
\(k=\sqrt{1-\frac{b^2}{a^2}}\)
\(E(k)=\int_{0}^{\frac{\pi}{2}}\sqrt{1-k^2\sin^2 \theta} d\theta =\int_{0}^{1}\frac{\sqrt{1-k^2x^2}}{\sqrt{1-x^2}} dx=\int_{0}^{1}\frac{1-k^2x^2}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\)
재미있는 사실
역사
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)