엡슈타인 제타함수

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 10월 28일 (수) 03:16 판
둘러보기로 가기 검색하러 가기
이 항목의 스프링노트 원문주소

 

 

간단한 소개

\(E(\tau,s) = {\pi\over s-1} + 2\pi(\gamma-\log(2)-\log(\sqrt{y}|\eta(\tau)|^2)) +O(s-1)\)

여기서

\(E(\tau,s) =\sum_{(m,n)\ne (0,0)}{y^s\over|m\tau+n|^{2s}}\) , \(\tau = x + iy\) (\(y > 0\))

 


 

재미있는 사실

 

 

 

역사

 

 

메모

 

 

관련된 항목들

 

 

수학용어번역

 

 

사전 형태의 자료

 

 

관련논문

 

관련도서 및 추천도서

 

 

관련기사

 

 

블로그