프로베니우스와 체보타레프 밀도(density) 정리

수학노트
http://bomber0.myid.net/ (토론)님의 2009년 11월 26일 (목) 18:27 판 (피타고라스님이 이 페이지의 이름을 프로베니우스와 체보타레프 밀도 정리 (Frobenius and Chebotarev density theorem)로 바꾸었습니다.)
둘러보기로 가기 검색하러 가기
간단한 소개
  • prime ideal (또는 주어진 다항식 mod p) 의 분해와  프로베니우스 원소(혹은 아틴 심볼)의 cycle 구조와의 관계와 그 비율에 관한 정리들
  • 갈루아 체확장 L/K,
  •  

 

 

프로베니우스의 density 정리(1880)
  • prime ideal과 cycle type의 관계

 

 

 

체보타레프의 density 정리 (1922)
  • prime ideal과 conjugacy class의 관계
    • 프로베니우스의 정리보다 더 강력함
    • There are cases where cycle types are same but the conjugacy classes are different

 

 

디리클레 정리의 유도

\(\zeta_n\)을 primitive n-th 단위근이라 하자.

\(\mathbb Q \subset \mathbb Q(\zeta_n)\) , \(\wp\) 는 unramified prime ideal over p 를 가정한다.

이제 소수 p에 대한 아틴 심볼은  \(\sigma_p(\alpha)=\alpha ^p \pmod \wp\) 로 정의된다.

체보타레프 정리에 의해 p의 분해는 아틴 심볼의 cycle 구조를 통해서 알 수 있다.

한편 \(\sigma_p(\zeta)=\zeta ^p=\zeta^{an+b}=\zeta^b\) 이므로, 아틴심볼은 p를 n으로 나눈 나머지에 의존한다.

따라서 의해 디리클레 정리가 증명된다.

 

 

관련된 학부 과목과 미리 알고 있으면 좋은 것들

 

 

관련된 대학원 과목

 

 

관련된 다른 주제들

 

표준적인 도서 및 추천도서

 

위키링크

 

참고할만한 자료