측지선

수학노트
Pythagoras0 (토론 | 기여)님의 2013년 4월 1일 (월) 23:08 판
둘러보기로 가기 검색하러 가기

개요

  • n차원 다양체 M의 coordinate chart 에서 \(\alpha(t)=(\alpha_1(t),\alpha_2(t),\cdots, \alpha_n(t))\) 로 표현되는 곡선이 측지선이 될 조건은 크리스토펠 기호를 사용하여 다음 미분방정식으로 쓸 수 있다

\[\frac{d^2\alpha_k }{dt^2} + \sum_{i,j}\Gamma^{k}_{~i j }\frac{d\alpha_i }{dt}\frac{d\alpha_j }{dt} = 0,\quad k=1,2,\cdots, n\]
또는\[\ddot{\alpha_k } + \sum_{i,j}\Gamma^{k}_{~i j }\dot{\alpha_i}\dot{\alpha_j }= 0,\quad k=1,2,\cdots, n\]

 

 

곡면의 측지선

  • 곡선 (\((x(t),y(t))\) 가 다음의 미분방정식을 만족해야 한다\[x''(t)+\Gamma _{1,1}{}^1 x'(t)^2+\Gamma _{1,2}{}^1 x'(t) y'(t)+\Gamma _{2,1}{}^1 x'(t) y'(t)+\Gamma _{2,2}{}^1 y'(t)^2=0\]\[y''(t)+\Gamma _{1,1}{}^2 x'(t)^2+\Gamma _{1,2}{}^2 x'(t) y'(t)+\Gamma _{2,1}{}^2 x'(t) y'(t)+\Gamma _{2,2}{}^2 y'(t)^2=0\]

 

 

 

 

역사

 

 

 

메모

 

 

관련된 항목들

 

 

 

 

사전 형태의 자료

 

   

블로그