가우스-보네 정리
개요
- 곡면의 기하학적 성질과 위상적인 성질을 연결해 주는 정리.
- 학부 미분기하학의 가장 중요한 정리중 하나임.
국소적 가우스-보네 정리
- $T$ :곡면상의 영역, $K$ : 가우스 곡률, $\alpha_i$ : 꼭지점에서의 angle jump,$k_g$ : 곡선의 측지곡률
\[\int_T K dA = 2\pi -\sum \alpha_i -\int_{\partial T}k_g ds\]
- 둘레가 측지선으로 이루어진 다각형 $T$의 경우에는 다음과 같이 단순화시킬 수 있음
\[\int_T K dA = 2\pi -\sum_{v\text{ : vertex}} \text{external angle at }v\]
대역적 가우스-보네 정리
- (정리)
유향 컴팩트 곡면 $M$에 대하여, 다음이 성립한다 \[\int_M K dA= 2\pi\chi(M)\] 여기서 $\chi(M)$는 $M$의 오일러 특성수
- 대역적 가우스-보네 정리는 국소적인 가우스-보네 정리로부터 증명 가능
- (증명)
먼저 곡면의 측지다각형으로의 분해를, $M=T_1\cup \cdots \cup T_n$으로 두자. 각 다각형 $T_i$에 대해 국소 가우스-보네 정리를 적용하여 다음을 얻는다 \[\int_{T_i} K dA = 2\pi -\sum_{v\text{ : vertex}} \text{external angle at }v\] 각 다각형에 대한 결과를 모두 더하여 다음을 얻는다. $$ \begin{align} \int_M K dA &= \sum_i \int_{T_i} K dA \\ &=2\pi F-\sum_{F\text{:faces}}\sum_{v \text{:vertex of }F} (\pi - \text{internal angle at }v)\\ &=2\pi F-\sum_{F\text{:faces}}\sum_{v \text{:vertex of }F}\pi - \sum_{F\text{:faces}}\sum_{v \text{:vertex of }F} \text{internal angle at }v\\ &=2\pi F-\sum_{F\text{:faces}}(\text{number of vertices of } F) \pi + 2\pi V \\ &=2\pi F-\sum_{F\text{:faces}}(\text{number of edges of } F) \pi+2\pi V \\ &=2\pi F-2\pi E +2 \pi V \\ &=2\pi\chi(M) \end{align} $$
(각각의 모서리는 두 번씩 세어짐)
메모
- The many faces of Gauss-Bonnet
- http://mathoverflow.net/questions/84521/a-question-on-generalized-gauss-bonnet-theorem
관련된 학부 과목과 미리 알고 있으면 좋은 것들
관련된 항목들
- 볼록다면체에 대한 데카르트 정리
- 증명의 유사성을 눈여겨 볼 것.
- 다면체에 대한 오일러의 정리 V-E+F=2
관련도서