데스나노-자코비 항등식

수학노트
Pythagoras0 (토론 | 기여)님의 2013년 11월 22일 (금) 08:01 판 (새 문서: ==개요== * 행렬의 minor 사이에 성립하는 항등식 ==예== ===$n=3$인 경우=== $$ \begin{align} \det \left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} ...)
(차이) ← 이전 판 | 최신판 (차이) | 다음 판 → (차이)
둘러보기로 가기 검색하러 가기

개요

  • 행렬의 minor 사이에 성립하는 항등식


$n=3$인 경우

$$ \begin{align} \det \left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ \end{array} \right) \det\left( \begin{array}{c} a_{2,2} \\ \end{array} \right)\\ = \det \left( \begin{array}{cc} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \\ \end{array} \right)\det\left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \\ \end{array} \right)-\det\left( \begin{array}{cc} a_{1,2} & a_{1,3} \\ a_{2,2} & a_{2,3} \\ \end{array} \right)\det\left( \begin{array}{cc} a_{2,1} & a_{2,2} \\ a_{3,1} & a_{3,2} \\ \end{array} \right) \end{align} $$

$n=4$인 경우

$$ \begin{align} \det\left( \begin{array}{cccc} a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,1} & a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,1} & a_{3,2} & a_{3,3} & a_{3,4} \\ a_{4,1} & a_{4,2} & a_{4,3} & a_{4,4} \\ \end{array} \right)\det \left( \begin{array}{cc} a_{2,2} & a_{2,3} \\ a_{3,2} & a_{3,3} \\ \end{array} \right) \\ = \det \left( \begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ \end{array} \right)\det\left( \begin{array}{ccc} a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,2} & a_{3,3} & a_{3,4} \\ a_{4,2} & a_{4,3} & a_{4,4} \\ \end{array} \right)-\det\left( \begin{array}{ccc} a_{1,2} & a_{1,3} & a_{1,4} \\ a_{2,2} & a_{2,3} & a_{2,4} \\ a_{3,2} & a_{3,3} & a_{3,4} \\ \end{array} \right)\det\left( \begin{array}{ccc} a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} \\ a_{4,1} & a_{4,2} & a_{4,3} \\ \end{array} \right) \end{align} $$


관련된 항목들


매스매티카 파일 및 계산 리소스