고전 단순 조화 진동자

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 고전역학에서의 적분가능 모형의 예
  • 질량 $m$, 각속도 \(\omega\) 인 조화진동자
  • 해밀토니안

\[H(p,q)=\frac{p^2}{2m}+\frac{m}{2}\omega^{2}q^2\]

  • 해밀턴 방정식

\[\dot{q}=\partial H/\partial p=\frac{p}{m}\] \[\dot{p}=-\partial H/\partial q=-m\omega^{2}q\]

  • 운동방정식

\[\ddot{q}=-\omega^{2} q\] \[\ddot{q}+\omega^{2} q=0\]

  • 보존량 \(L_ 1(q,p)=H(q,p)\)


작용-각 변수

\[ \dot{\theta}=\partial H/\partial I=\omega \]

  • 다음을 얻는다

\[\theta = \omega t+\theta_0\]

사전 형태의 자료