대칭곱 (symmetric power)과 대칭텐서

수학노트
둘러보기로 가기 검색하러 가기

개요

  • 벡터공간 $V$에 대하여 대칭곱 $\operatorname{Sym}^n V$를 정의할 수 있다
  • $V$에 작용하는 선형변환 $A$에 대하여 $\operatorname{Sym}^n A$를 정의할 수 있다


행렬의 대칭곱

  • $V$에 작용하는 선형변환 $A$를 생각하자


$\dim V=2$인 경우

$$ \begin{array}{c|c} n & \operatorname{Sym}^nA \\ \hline 0 & \left( \begin{array}{c} 1 \\ \end{array} \right) \\ 1 & \left( \begin{array}{cc} a(1,1) & a(1,2) \\ a(2,1) & a(2,2) \\ \end{array} \right) \\ 2 & \left( \begin{array}{ccc} a(1,1)^2 & a(1,1) a(1,2) & a(1,2)^2 \\ 2 a(1,1) a(2,1) & a(1,2) a(2,1)+a(1,1) a(2,2) & 2 a(1,2) a(2,2) \\ a(2,1)^2 & a(2,1) a(2,2) & a(2,2)^2 \\ \end{array} \right) \\ 3 & \left( \begin{array}{cccc} a(1,1)^3 & a(1,1)^2 a(1,2) & a(1,1) a(1,2)^2 & a(1,2)^3 \\ 3 a(1,1)^2 a(2,1) & a(2,2) a(1,1)^2+2 a(1,2) a(2,1) a(1,1) & a(2,1) a(1,2)^2+2 a(1,1) a(2,2) a(1,2) & 3 a(1,2)^2 a(2,2) \\ 3 a(1,1) a(2,1)^2 & a(1,2) a(2,1)^2+2 a(1,1) a(2,2) a(2,1) & a(1,1) a(2,2)^2+2 a(1,2) a(2,1) a(2,2) & 3 a(1,2) a(2,2)^2 \\ a(2,1)^3 & a(2,1)^2 a(2,2) & a(2,1) a(2,2)^2 & a(2,2)^3 \\ \end{array} \right) \\ 4 & \left( \begin{array}{ccccc} a(1,1)^4 & a(1,1)^3 a(1,2) & a(1,1)^2 a(1,2)^2 & a(1,1) a(1,2)^3 & a(1,2)^4 \\ 4 a(1,1)^3 a(2,1) & a(2,2) a(1,1)^3+3 a(1,2) a(2,1) a(1,1)^2 & 2 a(1,2) a(2,2) a(1,1)^2+2 a(1,2)^2 a(2,1) a(1,1) & a(2,1) a(1,2)^3+3 a(1,1) a(2,2) a(1,2)^2 & 4 a(1,2)^3 a(2,2) \\ 6 a(1,1)^2 a(2,1)^2 & 3 a(2,1) a(2,2) a(1,1)^2+3 a(1,2) a(2,1)^2 a(1,1) & a(1,2)^2 a(2,1)^2+4 a(1,1) a(1,2) a(2,2) a(2,1)+a(1,1)^2 a(2,2)^2 & 3 a(2,1) a(2,2) a(1,2)^2+3 a(1,1) a(2,2)^2 a(1,2) & 6 a(1,2)^2 a(2,2)^2 \\ 4 a(1,1) a(2,1)^3 & a(1,2) a(2,1)^3+3 a(1,1) a(2,2) a(2,1)^2 & 2 a(1,2) a(2,2) a(2,1)^2+2 a(1,1) a(2,2)^2 a(2,1) & a(1,1) a(2,2)^3+3 a(1,2) a(2,1) a(2,2)^2 & 4 a(1,2) a(2,2)^3 \\ a(2,1)^4 & a(2,1)^3 a(2,2) & a(2,1)^2 a(2,2)^2 & a(2,1) a(2,2)^3 & a(2,2)^4 \\ \end{array} \right) \\ \end{array} $$

관련된 항목들


사전 형태의 자료


리뷰, 에세이, 강의노트


매스매티카 파일 및 계산 리소스