Ramanujan's Cubic Continued fractions
http://bomber0.myid.net/ (토론)님의 2010년 7월 22일 (목) 04:23 판
introduction
\({1 \over 1+} {q+q^2 \over 1+} {q^4 \over 1+} {q^3+q^6 \over 1+}{q^8 \over 1+\cdots} =\frac{(q^{1};q^{8})_{\infty}(q^{7};q^{8})_{\infty}}{(q^{3};q^{8})_{\infty}(q^{5};q^{8})_{\infty}}\)
history
encyclopedia
- http://en.wikipedia.org/wiki/
- http://www.scholarpedia.org/
- Princeton companion to mathematics(Companion_to_Mathematics.pdf)
books
- 2010년 books and articles
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
[[4909919|]]
articles
- On Ramanujan's cubic continued fraction and explicit evaluations of theta-functions
- [1]C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- [1]C. Adiga, T. Kim, M.S.Mahadeva Naika, H. S. Madhusudhan, 2005
- RAMANUJAN’S CUBIC CONTINUED FRACTION AND RAMANUJAN TYPE CONGRUENCES FOR A CERTAIN PARTITION FUNCTION
- HEI-CHI CHAN
- HEI-CHI CHAN
- A NEW PROOF FOR TWO IDENTITIES INVOLVING RAMANUJAN’S CUBIC CONTINUED FRACTION
- HEI-CHI CHAN
- HEI-CHI CHAN
- On Ramanujan’s cubic continued fraction
- Heng Huat Chan (Urbana, Ill.)
- Heng Huat Chan (Urbana, Ill.)
http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf
Ramanujan's class invariants and cubic continued fraction
Berndt, 1995
- http://www.ams.org/mathscinet
- [2]http://www.zentralblatt-math.org/zmath/en/
- http://arxiv.org/
- http://www.pdf-search.org/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://dx.doi.org/
question and answers(Math Overflow)
blogs
- 구글 블로그 검색
- http://ncatlab.org/nlab/show/HomePage
experts on the field