Ramanujan's Cubic Continued fractions

수학노트
imported>Pythagoras0님의 2020년 11월 12일 (목) 22:44 판
둘러보기로 가기 검색하러 가기

introduction

\({1 \over 1+} {q+q^2 \over 1+} {q^{2}+a^{4} \over 1+} {q^3+q^6 \over 1+}{\cdots} =\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}}\)

\(\frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots}=q^{1/3}\frac{(q;q^{2})_{\infty}}{(q^{3};q^{6})^{3}_{\infty}} \)

\(\frac{\Gamma(\frac{1}{6})\Gamma(\frac{3}{6})\Gamma(\frac{5}{6})}{\Gamma(\frac{3}{6})^{3}}=2\)

 

 

history

\(G(q)= \frac{q^{1/3}}{1} {\ \atop+} \frac{q+q^2}{1}{\ \atop+} \frac{q^2+q^4}{1} {\ \atop+\dots} \quad |q|<1\)

 

related items

 

 

encyclopedia


 

 

books

 


 

 

articles

 

Ramanujan's class invariants and cubic continued fraction

Berndt, 1995

 

http://www.emis.de/journals/ETNA/vol.25.2006/pp158-165.dir/pp158-165.pdf

[2]


question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links